分析 (1)${a_1}≠0,3{a_n}-{a_1}={S_1}{S_n},n∈{N^*}$.n=1時,3a1-${a}_{1}={a}_{1}^{2}$,解得a1=2.Sn=$\frac{1}{2}(3{a}_{n}-2)$,n≥2時,an=Sn-Sn-1,化為an=3an-1,利用等比數(shù)列的通項(xiàng)公式即可得出.${a}_{n}=2×{3}^{n-1}$.
(2)由(1)可知:$\frac{n{a}_{n}}{2}$=n•3n-1.利用“錯位相減法”與等比數(shù)列的求和公式即可得出.
解答 解:(1)∵${a_1}≠0,3{a_n}-{a_1}={S_1}{S_n},n∈{N^*}$.
∴n=1時,3a1-${a}_{1}={a}_{1}^{2}$,解得a1=2.
∴Sn=$\frac{1}{2}(3{a}_{n}-2)$,n≥2時,an=Sn-Sn-1=$\frac{1}{2}(3{a}_{n}-2)$-$\frac{1}{2}(3{a}_{n-1}-2)$,
化為an=3an-1,
∴${a}_{n}=2×{3}^{n-1}$.
(2)由(1)可知:$\frac{n{a}_{n}}{2}$=n•3n-1.
∴數(shù)列$\left\{{\frac{{n{a_n}}}{2}}\right\}$的前項(xiàng)和Tn=1+2×3+3×32+…+n•3n-1,
3Tn=3+2×32+…+(n-1)•3n-1+n•3n,
∴-2Tn=1+3+32+…+3n-1-n•3n=$\frac{{3}^{n}-1}{3-1}$-n•3n,
∴Tn=$\frac{(2n-1)•{3}^{n}+1}{4}$.
點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式、“錯位相減法”、數(shù)列遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[2kπ-\frac{π}{4},2kπ+\frac{π}{4})\begin{array}{l}{\;}&{(k∈Z)}\end{array}$ | B. | $[2kπ-\frac{5π}{4},2kπ-\frac{π}{4}]\begin{array}{l}{\;}&{(k∈Z)}\end{array}$ | ||
C. | $[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}]\begin{array}{l}{\;}&{(k∈Z)}\end{array}$ | D. | $(2kπ-\frac{3π}{4},2kπ-\frac{π}{4}]\begin{array}{l}{\;}&{(k∈Z)}\end{array}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+y=0 | B. | x-y=0 | C. | x-y+1=0 | D. | x+y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | ${log_3}\frac{1}{2}$ | C. | log32 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25π | B. | 200π | C. | 100π | D. | 50π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com