當(dāng)時,曲線軸所圍成圖形的面積是        

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆安徽省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題13分)已知函數(shù)

(1)若實數(shù)求函數(shù)上的極值;

(2)記函數(shù),設(shè)函數(shù)的圖像軸交于點,曲線點處的切線與兩坐標軸所圍成圖形的面積為則當(dāng)時,求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江西省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù),其中為自然對數(shù)的底數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)記曲線在點(其中)處的切線為,軸、軸所圍成的三角形面積為,求的最大值.

【解析】第一問利用由已知,所以

,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;

第二問中,因為,所以曲線在點處切線為.

切線軸的交點為,與軸的交點為,

因為,所以,  

, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當(dāng)時,有最大值,此時,

解:(Ⅰ)由已知,所以, 由,得,  所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 

在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;  

即函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.

(Ⅱ)因為,所以曲線在點處切線為.

切線軸的交點為,與軸的交點為,

因為,所以,  

, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當(dāng)時,有最大值,此時

所以,的最大值為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省合肥市2010屆高三第四次模擬(理) 題型:解答題

 

已知函數(shù).

(1)若實數(shù),求函數(shù)上的極值;

(2)記函數(shù),設(shè)函數(shù)的圖象C與軸交于點,曲線C在點處的切線與兩坐標軸所圍成的圖形的面積為,求當(dāng)的最小值。

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案