分析 (1)建立空間直角坐標系,利用向量法能求出PB和平面PAD所成角的正弦值.
(2)求出平面PAD的法向量和平面PBC的法向量,利用向量法能求出面PAD和面PBC所成二面角的大。
解答 解:(1):建立如圖所示的空間直角坐標系,
則A(1,-1,0),B(1,1,0),D(0,0,0),(0,1,0),P(0,0,1),
∴$\overrightarrow{PA}$=(1,-1,-1),$\overrightarrow{PB}$=(1,1,-1),$\overrightarrow{PD}$=(0,0,-1),
設平面PAD的法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PA}=x-y-z=0}\\{\overrightarrow{m}•\overrightarrow{PD}=-z=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,1,0),
設PB和平面PAD所成角為θ,
則sinθ=$\frac{|\overrightarrow{PB}•\overrightarrow{m}|}{|\overrightarrow{PB}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{3}•\sqrt{2}}$=$\frac{\sqrt{6}}{3}$,
∴PB和平面PAD所成角的正弦值為$\frac{\sqrt{6}}{3}$.
(2)平面PAD的法向量$\overrightarrow{m}$=(1,1,0),
C(0,1,0),$\overrightarrow{PC}$=(0,1,-1),
平面PBC的法向量$\overrightarrow{n}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=a+b-c=0}\\{\overrightarrow{n}•\overrightarrow{PC}=b-c=0}\end{array}\right.$,取b=1,得$\overrightarrow{n}$=(0,1,1),
設面PAD和面PBC所成二面角為α,
則cosα=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{2}•\sqrt{2}}$=$\frac{1}{2}$,∴α=60°,
∴面PAD和面PBC所成二面角的大小為60°.
點評 本題考查線面角的正弦值的求法,考查二面角的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com