已知Sn是等差數(shù)列{an}的前n項和,且S6=3,S11=18,則a9等于( 。
分析:利用等差數(shù)列的求和公式化簡已知的兩等式,得到a1和a6的值,利用等差數(shù)列的性質(zhì)得到公差d的值,由首項a1和公差d的值,利用等差數(shù)列的通項公式即可求出a9的值.
解答:解:由S6=
6(a1+a6
2
=3,得到a1+a6=1,
又S11=
11(a1+a11
2
=11a6=18,∴a6=
18
11
,
∴a1=1-a6=-
7
11

∴5d=a1-a6=
25
11
,即d=
5
11
,
則a9=a1+8d=-
7
11
+8×
5
11
=3.
故選A.
點評:此題考查了等差數(shù)列的求和公式,通項公式,以及等差數(shù)列的性質(zhì),熟練掌握公式及性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下幾個命題,正確的是
 

①函數(shù)f(x)=
x-1
2x+1
對稱中心是(-
1
2
,-
1
2
)
;
②已知Sn是等差數(shù)列{an},n∈N*的前n項和,若S7>S5,則S9>S3;
③函數(shù)f(x)=x|x|+px+q(x∈R)為奇函數(shù)的充要條件是q=0;
④已知a,b,m均是正數(shù),且a<b,則
a+m
b+m
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•奉賢區(qū)一模)已知Sn是等差數(shù)列{an}(n∈N*)的前n項和,且S5<S6,S6=S7>S8,則下列結(jié)論錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sn是等差數(shù)列{an}的前n項和,若s2≥4,s4≤16,則a5的最大值是
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是等差數(shù)列{an}的前n項和,且S11=35+S6,則S17的值為
119
119

查看答案和解析>>

同步練習(xí)冊答案