(x+
2)
8
+(
2
-x)
8
=a0 +a1x+a2x2+…+a8x8,則a2=
448
448
分析:直接利用二項(xiàng)展開(kāi)式的通項(xiàng)分別求解兩項(xiàng)展開(kāi)式中含x2項(xiàng)的系數(shù)即可求解
解答:解:由題意可得a2
=C
6
8
(
2
)
6
+
C
2
8
(
2
)
6
=448
故答案為:448
點(diǎn)評(píng):本題考查利用二項(xiàng)展開(kāi)式的通項(xiàng)公式解決展開(kāi)式的特定項(xiàng)問(wèn)題,解題的關(guān)鍵是熟練應(yīng)用展開(kāi)式的通項(xiàng)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(0,+∞)的f(x),對(duì)(0,+∞)內(nèi)任意x,y,都滿足f(xy)=f(x)+f(y),且f(3)=1.
(1)求f(1);
(2)若x>1時(shí),f(x)>0恒成立,證明:f(x)在(0,+∞)為單調(diào)遞增函數(shù);
(3)在(2)的條件下,解不等式f(x)+f(x-8)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

班主任為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從全班25名女同學(xué),15名男同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析.
(I)如果按性別比例分層抽樣,男、女生各抽取多少名才符合抽樣要求?
(II)隨機(jī)抽出8名,他們的數(shù)學(xué)、物理分?jǐn)?shù)對(duì)應(yīng)如下表:
學(xué)生編號(hào) 1 2 3 4 5 6 7 8
數(shù)學(xué)分?jǐn)?shù)x 60 65 70 75 80 85 90 95
物理分?jǐn)?shù)y 72 77 80 84 88 90 93 95
(i)若規(guī)定85分以上(包括85分)為優(yōu)秀,在該班隨機(jī)調(diào)查一名同學(xué),他的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率是多少?
(ii)根據(jù)上表數(shù)據(jù),用變量y與x的相關(guān)系數(shù)或散點(diǎn)圖說(shuō)明物理成績(jī)y與數(shù)學(xué)成績(jī)x之間線性相關(guān)關(guān)系的強(qiáng)弱.如果有較強(qiáng)的線性相關(guān)關(guān)系,求y與x的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關(guān)關(guān)系,說(shuō)明理由.
參考公式:相關(guān)系數(shù)r=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
n
i=1
(yi-
.
y
)
2
;
回歸直線的方程是:
?
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
?
y
i
是與xi對(duì)應(yīng)的回歸估計(jì)值.
參考數(shù)據(jù):
.
x
=77.5,
.
y
=84.875
,
8
i=1
(xi-
.
x
)
2
≈1050
,
8
i=1
(yi-
.
y
)
2
≈457
,
8
i=1
(xi-
.
x
)(yi-
.
y
)≈688
,
1050
≈32.4
,
457
≈21.4
550
≈23.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知拋物線的方程為y2=2px(p>0),且拋物線上各點(diǎn)與焦點(diǎn)距離的最小值為2,若點(diǎn)M在此拋物線上運(yùn)動(dòng),點(diǎn)N與點(diǎn)M關(guān)于點(diǎn)A(1,1)對(duì)稱,則點(diǎn)N的軌跡方程為


  1. A.
    (x-2)2=-8(y-2)
  2. B.
    (x-2)2=8(y-2)
  3. C.
    (y-2)2=-8(x-2)
  4. D.
    (y-2)2=8(x-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=cos(2x+)+sinx·cosx

⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間;       ⑵ 若xÎ[0,],求f(x)的最值;

 ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

【解析】第一問(wèn)中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

解得+kp≤x≤+kp 

第二問(wèn)中,∵xÎ[0, ],∴2x-Î[-,],

∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,

當(dāng)2x-, 即x=時(shí),f(x)max=1

第三問(wèn)中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=

利用構(gòu)造角得到sin2a=sin[(2a-)+]

解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

sin2x-cos2x=sin(2x-)                 ……………………3分

⑴ 令+2kp≤2x-+2kp,

解得+kp≤x≤+kp          ……………………5分

∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ)            ……………………6分

⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,        ……………………8分

當(dāng)2x-, 即x=時(shí),f(x)max=1          ……………………9分

⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

∴ sin2a=sin[(2a-)+]

=sin(2a-)·cos+cos(2a-)·sin   ………12分

××

 

查看答案和解析>>

同步練習(xí)冊(cè)答案