已知函數(shù)f(x)=x﹣klnx,常數(shù)k>0.
(I)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求f(x)的單調(diào)區(qū)間;
(II)若函數(shù)g(x)=xf(x)在區(qū)間(1,2)上是增函數(shù),求k的取值范圍;
(III)設(shè)函數(shù)F(x)=,求證:
F(1)F(2)F(3)…F(2n)>2n(n+1)n(n∈N*).
(Ⅰ)解:求導(dǎo)函數(shù),可得,
因?yàn)閤=1是函數(shù)f(x)的一個(gè)極值點(diǎn),f'(1)=0,
∴k=1,
所以
令f'(x)>0,可得x∈(1,+∞)∪(﹣∞,0),
令f'(x)<0,可得x∈(0,1)
故函數(shù)F(x)的單調(diào)遞增區(qū)間是(1,+∞),(﹣∞,0),單調(diào)遞減區(qū)間是(0,1).
(Ⅱ)解:因?yàn)楹瘮?shù)g(x)=xf(x)在區(qū)間(1,2)上是增函數(shù),
則g'(x)=2x﹣k(1+lnx)≥0對(duì)x∈(1,2)恒成立,
對(duì)x∈(1,2)恒成立        
,則知對(duì)x∈(1,2)恒成立.
所以在x∈(1,2)單調(diào)遞增,
hmin(x)>h(1)=2
所以k≤2.
(Ⅲ)證明:F(x)==,
F(1)F(2)F(3)…F(2n)=()()…(
因?yàn)椋?IMG style="WIDTH: 58px; HEIGHT: 34px; VERTICAL-ALIGN: middle" src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20120915/201209151355329631924.png">)()=++
>(2n﹣k)(k+1)+2=2n+2+2nk﹣k2﹣k=2n+2+k(2n﹣k﹣1)>2n+2.
(k=0,1,2,3…n﹣1)
所以()()>2n+2,()()>2n+2,…,
)()>2n+2,()()>2n+2.
相乘,得:F(1)F(2)F(3)…F(2n)=()()…(
>(2n+2)n=2n(n+1)n
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案