.已知拋物線的準線為,焦點為F,的圓心在軸的正半軸上,且與軸相切,過原點O作傾斜角為的直線,交于點A,交于另一點B,且AO=OB=2.
(1)求和拋物線C的方程;
(2)若P為拋物線C上的動點,求的最小值;
(3)過上的動點Q向作切線,切點為S,T,求證:直線ST恒過一個定點,并求該定點的坐標.
(1)
(2)2
(3)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分).已知橢圓的中心在原點,焦點在軸上,離心率,一
條準線的方程為(Ⅰ)求橢圓的方程;(Ⅱ)設,直線過橢圓的右焦點為
且與橢圓交于、兩點,若,求直線的方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,直線l,橢圓C,分別為橢圓C的左、右焦點。
(Ⅰ)當直線l過右焦點時,求直線l的方程;
(Ⅱ)設直線l與橢圓C交于A,B兩點。
(。┣缶段AB長度的最大值;
(ⅱ)的重心分別為G,H。若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

.已知橢圓的離心率,則的值為:                  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的右焦點為,直線 軸交于點,若(其中為坐標原點).
(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓上的任意一點,為圓的任意一條直徑(,為直徑的兩個端點),求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)如圖,已知為橢圓的右焦點,直線過點且與雙曲線的兩條漸進線分別交于點,與橢圓交于點.

(I)若,雙曲線的焦距為4。求橢圓方程。
(II)若為坐標原點),,求橢圓的離心率

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓的左、右焦點分別為、,是橢圓上的一點,,原點到直線的距離為,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

分別是橢圓的左右焦點,過左焦點作直線與橢圓交于不同的兩點
(Ⅰ)若,求的長;
(Ⅱ)在軸上是否存在一點,使得為常數(shù)?若存在,求出點的坐標;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的焦點重合,則該橢圓的離心率是           

查看答案和解析>>

同步練習冊答案