如下圖,在四棱錐PABCD中,底面為直角梯形,ADBC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分別為PC、PB的中點.

(1)求證:PBDM;

(2)求BD與平面ADMN所成的角.

解:以A為坐標原點AB、AD、AP分別為xy、z軸建立空間直角坐標系Axyz,設(shè)BC=1,則A(0,0,0),P(0,0,2),B(2,0,0),M(1,,1),D(0,2,0).?

(1)因為·Equation.3=(2,0,-2)·(1,-,1)=0,所以PBDM.?

(2)因為·=(2,0,-2)·(0,2,0)=0,所以PBAD.又PBDM,∴PB⊥平面ADMN.因此〈,Equation.3〉的余角即是BD與平面ADMN所成的角.因為cos〈,Equation.3〉=,所以〈,Equation.3〉=,因此BD與平面ADMN所成的角為.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如下圖,在四棱錐P-ABCD中,底面為正方形,PC與底面ABCD垂直(圖1),圖2為該四棱錐的主視圖和側(cè)視圖,它們是腰長為6cm的全等的等腰直角三角形.
(Ⅰ)根據(jù)圖2所給的主視圖、側(cè)視圖畫出相應(yīng)的俯視圖,并求出該俯視圖所在的平面
圖形的面積.
(Ⅱ)圖3中,E為棱PB上的點,F(xiàn)為底面對角線AC上的點,且
BE
EP
=
CF
FA
,求證:EF∥平面PDA.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第二章 立體幾何》2013年高考數(shù)學(xué)優(yōu)化訓(xùn)練(解析版) 題型:解答題

如下圖,在四棱錐P-ABCD中,底面為正方形,PC與底面ABCD垂直(圖1),圖2為該四棱錐的主視圖和側(cè)視圖,它們是腰長為6cm的全等的等腰直角三角形.
(Ⅰ)根據(jù)圖2所給的主視圖、側(cè)視圖畫出相應(yīng)的俯視圖,并求出該俯視圖所在的平面
圖形的面積.
(Ⅱ)圖3中,E為棱PB上的點,F(xiàn)為底面對角線AC上的點,且,求證:EF∥平面PDA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:金版人教A版數(shù)學(xué)理科:立體幾何初步8(必修2、選修2-1)(解析版) 題型:解答題

如下圖,在四棱錐P-ABCD中,底面為正方形,PC與底面ABCD垂直(圖1),圖2為該四棱錐的主視圖和側(cè)視圖,它們是腰長為6cm的全等的等腰直角三角形.
(Ⅰ)根據(jù)圖2所給的主視圖、側(cè)視圖畫出相應(yīng)的俯視圖,并求出該俯視圖所在的平面
圖形的面積.
(Ⅱ)圖3中,E為棱PB上的點,F(xiàn)為底面對角線AC上的點,且,求證:EF∥平面PDA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):7 立體幾何 質(zhì)量檢測(1)(解析版) 題型:解答題

如下圖,在四棱錐P-ABCD中,底面為正方形,PC與底面ABCD垂直(圖1),圖2為該四棱錐的主視圖和側(cè)視圖,它們是腰長為6cm的全等的等腰直角三角形.
(Ⅰ)根據(jù)圖2所給的主視圖、側(cè)視圖畫出相應(yīng)的俯視圖,并求出該俯視圖所在的平面
圖形的面積.
(Ⅱ)圖3中,E為棱PB上的點,F(xiàn)為底面對角線AC上的點,且,求證:EF∥平面PDA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高考數(shù)學(xué)沖刺預(yù)測試卷14(文科)(解析版) 題型:解答題

如下圖,在四棱錐P-ABCD中,底面為正方形,PC與底面ABCD垂直(圖1),圖2為該四棱錐的主視圖和側(cè)視圖,它們是腰長為6cm的全等的等腰直角三角形.
(Ⅰ)根據(jù)圖2所給的主視圖、側(cè)視圖畫出相應(yīng)的俯視圖,并求出該俯視圖所在的平面
圖形的面積.
(Ⅱ)圖3中,E為棱PB上的點,F(xiàn)為底面對角線AC上的點,且,求證:EF∥平面PDA.

查看答案和解析>>

同步練習(xí)冊答案