已知函數(shù)f(x)=x-
1
x

(1)畫出函數(shù)f(x)在定義域內(nèi)的圖象
(2)用定義證明函數(shù)f(x)在(0,+∞)上為增函數(shù).
考點:函數(shù)的圖象
專題:作圖題,函數(shù)的性質及應用
分析:(1)根據(jù)函數(shù)定義域,利用列表,描點,畫圖即可.
(2)根據(jù)函數(shù)單調性的定義證明即可.
解答: 解:(1)函數(shù)y=x-
1
x
圖象如下:


(2)設x1,x2∈(0,+∞),且x1<x2,f(x1)-f(x2)=(x1-
1
x1
)-(x2-
1
x2

=(x1-x2)(1+
1
x2x1
),由題設,x1-x2<0,1+
1
x1x2
>0,∴(x1-x2)(1+
1
x1x2
)<0,
f(x1)-f(x2)<0,f(x1)<f(x2
故函數(shù)f(x)在定義域(0,+∞)上是遞增函數(shù).
點評:本題考查函數(shù)的圖象畫法以及利用定義證明函數(shù)的單調性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,Sn為其前n項和.若a1+a3+a5+a7=-4,S8=-16,則公差d=
 
;數(shù)列{an}的前
 
項和最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是雙曲線
x2
4
-
y2
12
=1右支上的一個動點,F(xiàn)1,F(xiàn)2為左右兩個焦點,在△PF1F2中,令∠PF1F2=α,∠PF2F1=β,則tan
α
2
÷tan
β
2
的值為(  )
A、
1
3
B、3-2
2
C、3
D、與P的位置有關的變數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)F(x)=f(x)-ag(x)(a為常數(shù)),f(x)=
ex
x2
,g(x)=
2
x
+lnx,(e是自然對數(shù)的底數(shù),e=2.71828).
(Ⅰ)求曲線y=g(x)在點(1,g(1))處的切線方程;
(Ⅱ)當a≤0時,求函數(shù)F(x)的最大值和最小值;
(Ⅲ)若函數(shù)F(x)在(0,2)內(nèi)存在兩個極值點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)對一切實數(shù)x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0,則f(0)=
 
,f(x)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B,C是圓O:x2+y2=1上任意的不同三點,若
OA
=3
OB
+x
OC
,則正實數(shù)x的取值范圍為(  )
A、(0,2)
B、(1,4)
C、(2,4)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,
m
=(2sinA-sinC,cosC),
n
=(sinB,cosB),且
m
n

(1)求∠B的大。
(2)∠B的角平分線交AC于點D,記BC=x,BA=y,BD=1,請將y用含x的式子表示,并求出y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象兩相鄰對稱軸之間的距離是
π
2
,若將f(x)的圖象先向右平移
π
6
個單位,所得函數(shù)g(x)為奇函數(shù).
(1)求f(x)的解析式;
(2)求f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若圓x2+y2=2在點(1,1)處的切線與雙曲線
x2
a2
-
y2
b2
=1的一條漸近線垂直,則雙曲線的離心率等于(  )
A、
2
B、
3
C、2
D、
5

查看答案和解析>>

同步練習冊答案