數(shù)列的前n項(xiàng)和,數(shù)列中,(n2),若

(1)設(shè),求證數(shù)列是等比數(shù)列;

(2)求數(shù)列的通項(xiàng)公式.

答案:略
解析:

(1)證明:∵,,

.又,

兩式相減得

,

所以數(shù)列是等比數(shù)列。

(2)解:,

,,

∴當(dāng)n2時(shí),

,∴


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列是以d為公差的等差數(shù)列,數(shù)列是以q為公比的等比數(shù)列.
(1)若數(shù)列的前n項(xiàng)和為Sn,且a1=b1=d=2,S3<a1004+5b2-2012,求整數(shù)q的值;
(2)在(1)的條件下,試問(wèn)數(shù)列中是否存在一項(xiàng)bk,使得bk恰好可以表示為該數(shù)列中連續(xù)p(p∈N,p≥2)項(xiàng)的和?請(qǐng)說(shuō)明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s-r)是(t-r)的約數(shù)),求證:數(shù)列中每一項(xiàng)都是數(shù)列中的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省高三5月模擬考試(二)文科數(shù)學(xué)試卷(解析版) 題型:解答題

記數(shù)列的前n項(xiàng)和,且,且成公比不等于1的等比數(shù)列。

(1)求c的值;

(2)設(shè),求數(shù)列{}的前n項(xiàng)和Tn

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三上學(xué)期第三次理科數(shù)學(xué)測(cè)試卷(解析版) 題型:解答題

已知二次函數(shù)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為,數(shù)列的前n項(xiàng)和為,點(diǎn)均在函數(shù)的圖像上。

(Ⅰ)、求數(shù)列的通項(xiàng)公式;        

(Ⅱ)、設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)m;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分13分)

設(shè)數(shù)列的前n項(xiàng)和為,如果為常數(shù),則稱(chēng)數(shù)列為“科比數(shù)列”。

   (1)等差數(shù)列的首項(xiàng)為1,公差不為零,若為“科比數(shù)列”,求的通項(xiàng)公式;

   (2)數(shù)列的各項(xiàng)都是正數(shù),前n項(xiàng)和為,若對(duì)任意都成立,試推斷數(shù)列是否為“科比數(shù)列”?并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分13分)

設(shè)數(shù)列的前n項(xiàng)和為,如果為常數(shù),則稱(chēng)數(shù)列為“科比數(shù)列”。

   (1)等差數(shù)列的首項(xiàng)為1,公差不為零,若為“科比數(shù)列”,求的通項(xiàng)公式;

   (2)數(shù)列的各項(xiàng)都是正數(shù),前n項(xiàng)和為,若對(duì)任意都成立,試推斷數(shù)列是否為“科比數(shù)列”?并說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案