(文)函數(shù)y1=f(x)的定義域D,它的零點(diǎn)組成的集合是E1,y2=g(x)的定義域D,它的零點(diǎn)組成的集合是E2,則函數(shù)y=f(x)g(x)零點(diǎn)組成的集合是
 
.(答案用E1、E2、D的集合運(yùn)算來表示)
分析:根據(jù)函數(shù)零點(diǎn)的定義,由y=f(x)g(x)=0,得f(x)=0或g(x)=0,然后根據(jù)集合關(guān)系即可得到結(jié)論.
解答:解:∵y1=f(x)的定義域D,y2=g(x)的定義域D,
∴函數(shù)y=f(x)g(x)的定義域?yàn)镈,
由y=f(x)g(x)=0,
得f(x)=0或g(x)=0,
∵y1=f(x)的零點(diǎn)組成的集合是E1,y2=f(x)的零點(diǎn)組成的集合是E2,
∴y=f(x)g(x)=0的零點(diǎn)為(E1∪E2)∩D,
故答案為:(E1∪E2)∩D.
點(diǎn)評:本題主要考查函數(shù)零點(diǎn)的應(yīng)用,以及基本的基本運(yùn)算,注意求函數(shù)的零點(diǎn)前必須要求函數(shù)的定義域.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•盧灣區(qū)二模)(文)(1)已知動點(diǎn)P(x,y)到點(diǎn)F(0,1)與到直線y=-1的距離相等,求點(diǎn)P的軌跡L的方程;
(2)若正方形ABCD的三個頂點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3)(x1<0≤x2<x3)在(1)中的曲線L上,設(shè)BC的斜率為k,l=|BC|,求l關(guān)于k的函數(shù)解析式l=f(k);
(3)由(2),求當(dāng)k=2時正方形ABCD的頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?,1],且滿足下列條件:

①對于任意x∈[0,1],總有f(x)≥3,且f(1)=4;

②若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-3.

(1)求f(0)的值;

(2)求證:f(x)≤4;

(3)當(dāng)x∈(](n=1,2,3,…)時,試證明f(x)<3x+3.

(文)如圖,設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線交拋物線于A、B兩點(diǎn),且A、B兩點(diǎn)坐標(biāo)為(x1,y1)、(x2,y2),y1>0,y2<0,P是此拋物線的準(zhǔn)線上的一點(diǎn),O是坐標(biāo)原點(diǎn).

(1)求證:y1y2=-p2;

(2)直線PA、PF、PB的方向向量為(1,a)、(1,b)、(1,c),求證:實(shí)數(shù)a、b、c成等差數(shù)列;

(3)若=0,∠APF=α,∠BPF=β,∠PFO=θ,求證:θ=|α-β|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知點(diǎn)B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn),…(n∈N*)順次為某直線l上的點(diǎn),點(diǎn)A1(x1,0),A2(x2,0),…,An(xn,0),…順次為x軸上的點(diǎn),其中x1=a(0<a≤1).對于任意的n∈N*,△AnBnAn+1是以Bn為頂點(diǎn)的等腰三角形.

(1)證明xn+2-xn是常數(shù),并求數(shù)列{xn}的通項(xiàng)公式.

(2)若l的方程為y=,試問在△AnBnAn+1(n∈N*)中是否存在直角三角形?若存在,求出a的值;若不存在,請說明理由.

(文)已知函數(shù)f(x)=ax3x2+cx+d(a、c、d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.

(1)求a、c、d的值.

(2)若h(x)=x2-bx+,解不等式f′(x)+h(x)<0.

(3)是否存在實(shí)數(shù)m,使函數(shù)g(x)=f′(x)-mx在區(qū)間[m,m+2]上有最小值-5?若存在,請求出實(shí)數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年上海市盧灣區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

(文)(1)已知動點(diǎn)P(x,y)到點(diǎn)F(0,1)與到直線y=-1的距離相等,求點(diǎn)P的軌跡L的方程;
(2)若正方形ABCD的三個頂點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3)(x1<0≤x2<x3)在(1)中的曲線L上,設(shè)BC的斜率為k,l=|BC|,求l關(guān)于k的函數(shù)解析式l=f(k);
(3)由(2),求當(dāng)k=2時正方形ABCD的頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案