【題目】已知f(x)=|x﹣1|+|2x+3|.
(1)若f(x)≥m對(duì)一切x∈R都成立,求實(shí)數(shù)m的取值范圍;
(2)解不等式f(x)≤4.

【答案】
(1)解:f(x)=|x﹣1|+|2x+3|,

x≥1時(shí),f(x)=x﹣1+2x+3=3x+2,f(x)≥5,

<x<1時(shí),f(x)=﹣x+1+2x+3=x+4, <f(x)<5,

x≤﹣ 時(shí),f(x)=﹣x+1﹣2x﹣3=﹣3x﹣2≥ ,

若f(x)≥m對(duì)一切x∈R都成立,

只需m≤ 即可


(2)解:x≥1時(shí),f(x)=x﹣1+2x+3=3x+2≤4,解得:x≤ ,無(wú)解,

<x<1時(shí),f(x)=﹣x+1+2x+3=x+4≤4,解得:x≤0,

x≤﹣ 時(shí),f(x)=﹣x+1﹣2x﹣3=﹣3x﹣2≤4,解得:x≥﹣2,

故不等式的解集是:[﹣2,0]


【解析】(1)通過(guò)討論x的范圍,求出f(x)的最小值,從而求出m的范圍即可;(2)求出各個(gè)區(qū)間上的不等式的解集,取并集即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)為拋物線上不同的四點(diǎn),且點(diǎn)關(guān)于軸對(duì)稱(chēng),平行于該拋物線在點(diǎn)處的切線.

(1)求證:直線與直線的傾斜角互補(bǔ);

(2)若,且的面積為16,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種藥在病人血液中的含量不低于2克時(shí),它才能起到有效治療的作用,已知每服用克的藥劑,藥劑在血液中的含量隨著時(shí)間小時(shí)變化的函數(shù)關(guān)系式近似為,其中

若病人一次服用9克的藥劑,則有效治療時(shí)間可達(dá)多少小時(shí)?

若病人第一次服用6克的藥劑,6個(gè)小時(shí)后再服用3m克的藥劑,要使接下來(lái)的2小時(shí)中能夠持續(xù)有效治療,試求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱ABC-A1B1C1,DAC中點(diǎn),且直線AB1與平面BCC1B1所成的角為300,則異面直線AB1BD所成角的大小為 ( )

A. 300

B. 450

C. 600

D. 900

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)命題:

函數(shù)的一條對(duì)稱(chēng)軸是

函數(shù)的圖象關(guān)于點(diǎn)(,0)對(duì)稱(chēng);

正弦函數(shù)在第一象限為增函數(shù)

,則,其中

以上四個(gè)命題中正確的有    (填寫(xiě)正確命題前面的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a為實(shí)數(shù),函數(shù)f(x)=x2﹣|x2﹣ax﹣2|在區(qū)間(﹣∞,﹣1)和(2,+∞)上單調(diào)遞增,則a的取值范圍為(
A.[1,8]
B.[3,8]
C.[1,3]
D.[﹣1,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+x﹣ln(x+a)+3b在x=0處取得極值0. (Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若關(guān)于x的方程f(x)= x+m在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =( sin ,1), =(cos ,cos2 ). (Ⅰ)若 =1,求cos( ﹣x)的值;
(Ⅱ)記f(x)= ,在△ABC中,A、B、C的對(duì)邊分別為a、b、c,且滿(mǎn)足(2a﹣c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式|x+3|<2x+1的解集為{x|x>m}. (Ⅰ)求m的值;
(Ⅱ)設(shè)關(guān)于x的方程|x﹣t|+|x+ |=m(t≠0)有解,求實(shí)數(shù)t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案