(本題滿分12分)
如圖,甲船以每小時30海里的速度向正北方向航行,乙船按固定方向勻速直線航行.當(dāng)甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,此時兩船相距20海里.當(dāng)甲船航行20分鐘到達(dá)A2處時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10海里,問乙船每小時航行多少海里?

解析試題分析:如圖

連結(jié),, ,又
是等邊三角形,

中,,
由余弦定理得

        因此乙船的速度的大小為
答:乙船每小時航行海里。
考點:解三角形
點評:解三角形通常用正余弦定理實現(xiàn)邊與角的互相轉(zhuǎn)化。正弦定理:
余弦定理:,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)的內(nèi)角A、B、C所對的邊分別為a、b、c,已知
(I) 求的周長;
(II)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

ABC的三個內(nèi)角A、B、C所對邊長分別為a、b、c,已知c=3,C=60°。
(1)若A=75°,求b的值;(2)若a=2 b, 求b的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角的對邊分別為,且向量,且為銳角.
(Ⅰ)求角的大。
(Ⅱ)若,,求面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
如圖,甲船以每小時30海里的速度向正北方向航行,乙船按固定方向勻速直線航行.當(dāng)甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,此時兩船相距20海里.當(dāng)甲船航行20分鐘到達(dá)A2處時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10海里,問乙船每小時航行多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,扇形是一個觀光區(qū)的平面示意圖,其中,半徑=1,為了便于游客觀光休閑,擬在觀光區(qū)內(nèi)鋪設(shè)一條從入口到出口的觀光道路,道路由弧,線段及線段組成,其中在線段上且,設(shè)

(1)用表示的長度,并寫出的取值范圍.
(2)當(dāng)為何值時,觀光道路最長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在△ABC中,已知bc=1,∠B=60°,求a和∠A,∠C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題10分)△ABC中,D在邊BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的長及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分) 在中,角的對邊分別為,且滿足
(1)求角的大。
(2)若為鈍角三角形,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案