如圖,四棱錐SABCD的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的倍,P為側(cè)棱SD上的點(diǎn).
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,試說(shuō)明理由.
(1)見(jiàn)解析 (2)30° (3)存在,2∶1
解析(1)證明:連接BD,設(shè)AC交BD于O,
由題意知SO⊥AC.
在正方形ABCD中,AC⊥BD,
所以AC⊥平面SBD,得AC⊥SD.
解:(2)設(shè)正方形邊長(zhǎng)為a,
則SD=a,
又OD=a,所以∠SDO=60°,
連接OP,由(1)知AC⊥平面SBD,
所以AC⊥OP,且AC⊥OD,
所以∠POD是二面角PACD的平面角.
由SD⊥平面PAC,知SD⊥OP,所以∠POD=30°,
即二面角PACD的大小為30°.
(3)在棱SC上存在一點(diǎn)E,使BE∥平面PAC.
由(2)可得PD=a,
故可在SP上取一點(diǎn)N,使PN=PD.
過(guò)N作PC的平行線(xiàn)與SC的交點(diǎn)即為E.
連接BN,在△BDN中,知BN∥PO.
又由于NE∥PC,故平面BEN∥平面PAC,
得BE∥平面PAC.
由于SN∶NP=2∶1,故SE∶EC=2∶1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,正方體中,已知為棱上的動(dòng)點(diǎn).
(1)求證:;
(2)當(dāng)為棱的中點(diǎn)時(shí),求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐,底面是矩形,平面底面,,平面,且點(diǎn)在上.
(1)求證:;
(2)求三棱錐的體積;
(3)設(shè)點(diǎn)在線(xiàn)段上,且滿(mǎn)足,試在線(xiàn)段上確定一點(diǎn),使得平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.過(guò)A作AF⊥SB,垂足為F,點(diǎn)E,G分別是棱SA,SC的中點(diǎn).
求證:(1)平面EFG∥平面ABC;
(2)BC⊥SA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,AB是圓O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)V是圓O所在平面外一點(diǎn),是AC的中點(diǎn),已知,.
(1)求證:OD//平面VBC;
(2)求證:AC⊥平面VOD;
(3)求棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在底面為直角梯形的四棱錐PABCD中,AD∥BC,PD⊥平面ABCD,AD=1,AB=,BC=4.
(1)求證:BD⊥PC;
(2)求直線(xiàn)AB與平面PDC所成的角;
(3)設(shè)點(diǎn)E在棱PC上,=λ,若DE∥平面PAB,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖①,E、F分別是直角三角形ABC邊AB和AC的中點(diǎn),∠B=90°,沿EF將三角形ABC折成如圖②所示的銳二面角A1EFB,若M為線(xiàn)段A1C的中點(diǎn).求證:
(1)直線(xiàn)FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在正方體ABCD-A1B1C1D1中,E、F分別是CD、A1D1中點(diǎn).
(1)求證:AB1⊥BF;
(2)求證:AE⊥BF;
(3)棱CC1上是否存在點(diǎn)F,使BF⊥平面AEP,若存在,確定點(diǎn)P的位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,多面體ABC-A1B1C1中,三角形ABC是邊長(zhǎng)為4的正三角形,AA1∥BB1∥CC1,AA1⊥平面ABC,AA1=BB1=2CC1=4.
(1)若O是AB的中點(diǎn),求證:OC1⊥A1B1;
(2)在線(xiàn)段AB1上是否存在一點(diǎn)D,使得CD∥平面A1B1C1,若存在,確定點(diǎn)D的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com