【題目】一只小船以的速度由南向北勻速駛過湖面,在離湖面高20米的橋上,一輛汽車由西向東以的速度前進(如圖),現(xiàn)在小船在水平面上的點以南的40米處,汽車在橋上點以西的30米處(其中水平面),請畫出合適的空間圖形并求小船與汽車間的最短距離.(不考慮汽車與小船本身的大小)

【答案】最短,最短距離為

【解析】試題分析:設經過時間汽車在點,船在點(如圖),

, , ,且有

設小船所在平面為確定的平面為,記,由

水平面,即.作,則.連接,則.再由, ,利用勾股定理得出 ,即可得出AB最短距離.

試題解析:

設經過時間汽車在點,船在點(如圖),

, ,

且有 ,

設小船所在平面為確定的平面為,

水平面,即

連接,

再由 ,

所以

所以最短,最短距離為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為 與p,且乙投球2次均未命中的概率為 . (Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1)+loga(3﹣x)(a>0且a≠1),且f(1)=2
(1)求a的值及f(x)的定義域;
(2)若不等式f(x)≤c的恒成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十二生肖,又叫屬相,是中國與十二地支相配以人出生年份的十二種動物,包括鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬。已知在甲、乙、丙、丁、戊、己六人中,甲、乙、丙的屬相均是龍,丁、戊的屬相均是虎,己的屬相是猴,現(xiàn)從這六人中隨機選出三人,則所選出的三人的屬相互不相同的概率等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某生產旅游紀念品的工廠,擬在2017年度進行系列促銷活動,經市場調查和測算,該紀念品的年銷售量 (單位:萬件)與年促銷費用 (單位:萬元)之間滿足 成反比例.若不搞促銷活動,紀念品的年銷售量只有1萬件.已知加工廠2017年生產紀念品的固定投資為3萬元,沒生產1萬件紀念品另外需要投資32萬元.當工廠把每件紀念品的售價定為“年平均每件生產成本的1.5倍”與“年平均每件所占促銷費的一半”之和時,則當年的產量和銷量相等.(利潤=收入-生產成本-促銷費用)
(Ⅰ)請把該工廠2017年的年利潤 (單位:萬元)表示成促銷費 (單位:萬元)的函數(shù);
(Ⅱ)試問:當2017年的促銷費投入多少萬元時,該工程的年利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)當設集合求集合;

(2)在(1)的條件下,若且滿足,求實數(shù)的取值范圍;

(3)若對任意的,存在使不等式恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一只小船以的速度由南向北勻速駛過湖面,在離湖面高20米的橋上,一輛汽車由西向東以的速度前進(如圖),現(xiàn)在小船在水平面上的點以南的40米處,汽車在橋上點以西的30米處(其中水平面),請畫出合適的空間圖形并求小船與汽車間的最短距離.(不考慮汽車與小船本身的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},{bn}的通項公式分別是an=(﹣1)n+2016a,bn=2+ ,若an<bn , 對任意n∈N+恒成立,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側面積.

查看答案和解析>>

同步練習冊答案