已知P(x,y)是橢圓(a>b>0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是焦點(diǎn),則|PF1|•|PF2|的取值范圍是   
【答案】分析:先根據(jù)橢圓的定義得到|PF1|+|PF2|=2a,然后用|PF1|表示出|PF2|后代入到|PF1|•|PF2|中,最后根據(jù)二次函數(shù)的圖象和性質(zhì)可確定答案.
解答:解:由題意可知|PF1|+|PF2|=2a
∴|PF2|=2a-|PF1|(a-c≤|PF1|≤a+c)
∴|PF1|•|PF2|=|PF1|(2a-|PF1|)=-|PF1|2+2a|PF1|=-(|PF1|-a)2+a2
∵a-c≤|PF1|≤a+c
∴|PF1|•|PF2|=-(|PF1|-a)2+a2∈[b2,a2]
故答案為:[b2,a2]
點(diǎn)評(píng):本題主要考查橢圓的定義,即橢圓上點(diǎn)到兩焦點(diǎn)的距離的和等于2a.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧省本溪一中高三(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢C:+=1(a>b>0)的焦點(diǎn)為F1,F(xiàn)2,P是橢圓上任意一點(diǎn),若以坐標(biāo)原點(diǎn)為圓心,橢圓短軸長(zhǎng)為直徑的圓經(jīng)過(guò)橢圓的焦點(diǎn),且△PF1F2的周長(zhǎng)為4
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線的l是圓O:x2+y2=上動(dòng)點(diǎn)P(x,y)(x-y≠0)處的切線,l與橢圓C交于不同的兩點(diǎn)Q,R,證明:∠QOR的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧省本溪一中高三(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢C:+=1(a>b>0)的焦點(diǎn)為F1,F(xiàn)2,P是橢圓上任意一點(diǎn),若以坐標(biāo)原點(diǎn)為圓心,橢圓短軸長(zhǎng)為直徑的圓經(jīng)過(guò)橢圓的焦點(diǎn),且△PF1F2的周長(zhǎng)為4
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線的l是圓O:x2+y2=上動(dòng)點(diǎn)P(x,y)(x-y≠0)處的切線,l與橢圓C交于不同的兩點(diǎn)Q,R,證明:∠QOR的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省武漢市華師一附中高三(上)摸底數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢C:+=1(a>b>0)的焦點(diǎn)為F1,F(xiàn)2,P是橢圓上任意一點(diǎn),若以坐標(biāo)原點(diǎn)為圓心,橢圓短軸長(zhǎng)為直徑的圓經(jīng)過(guò)橢圓的焦點(diǎn),且△PF1F2的周長(zhǎng)為4
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線的l是圓O:x2+y2=上動(dòng)點(diǎn)P(x,y)(x-y≠0)處的切線,l與橢圓C交于不同的兩點(diǎn)Q,R,證明:∠QOR的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省荊州市公安三中高三(上)數(shù)學(xué)積累測(cè)試卷11(解析版) 題型:解答題

已知橢C:+=1(a>b>0)的焦點(diǎn)為F1,F(xiàn)2,P是橢圓上任意一點(diǎn),若以坐標(biāo)原點(diǎn)為圓心,橢圓短軸長(zhǎng)為直徑的圓經(jīng)過(guò)橢圓的焦點(diǎn),且△PF1F2的周長(zhǎng)為4
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線的l是圓O:x2+y2=上動(dòng)點(diǎn)P(x,y)(x-y≠0)處的切線,l與橢圓C交于不同的兩點(diǎn)Q,R,證明:∠QOR的大小為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案