分析 (1)從12個球中任取一個,記事件A=“得到紅球”,事件B=“得到黑球”,事件C=“得到黃球”,事件D=“得到綠球”,則事件A、B、C、D兩兩互斥,由此能求出得到黑球、黃球、綠球的概率.
(2)事件“得到紅球或綠球”可表示為事件“A+D”,由互斥事件概率加法公式和對立事件概率計(jì)算公式能求出得到的不是“紅球或綠球”的概率.
解答 解:(1)從12個球中任取一個,
記事件A=“得到紅球”,事件B=“得到黑球”,事件C=“得到黃球”,事件D=“得到綠球”,
則事件A、B、C、D兩兩互斥,
由題意有:$\left\{\begin{array}{l}P(A)=\frac{1}{3}\\ P(B+C)=\frac{5}{12}\\ P(C+D)=\frac{5}{12}\\ P(A+B+C+D)=1\end{array}\right.$,
即$\left\{\begin{array}{l}P(A)=\frac{1}{3}\\ P(B)+P(C)=\frac{5}{12}\\ P(C)+P(D)=\frac{5}{12}\\ P(A)+P(B)+P(C)+P(D)=1\end{array}\right.$,
解得$P(A)=\frac{1}{3}$,$P(B)=\frac{1}{4}$,$P(C)=\frac{1}{6}$,$P(D)=\frac{1}{4}$,
故得到黑球、黃球、綠球的概率分別為$\frac{1}{4}$、$\frac{1}{6}$、$\frac{1}{4}$.
(2)事件“得到紅球或綠球”可表示為事件“A+D”,
由(1)及互斥事件概率加法公式得:
$P(A+D)=P(A)+P(D)=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}$,
故得到的不是“紅球或綠球”的概率:
$P=1-P(A+D)=1-\frac{7}{12}=\frac{5}{12}$.
點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意互斥事件概率加法公式和對立事件概率計(jì)算公式的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-4,0) | B. | [-4,0) | C. | (-∞,-4) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4π}{3}$ | B. | 4π | C. | 12π | D. | $4\sqrt{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (1,+∞) | C. | (0,1) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com