設(shè)α是空間中的一個平面,l,m,n是三條不同的直線,
①若m?α,n?α,l⊥m,l⊥n,則l⊥α;
②若l∥m,m∥n,l⊥α,則n⊥α;
③若l∥m,m⊥α,n⊥α,則l∥n;
④若m?α,n⊥α,l⊥n,則l∥m;
則上述命題中正確的是( 。
分析:①根據(jù)線面垂直的判定,可判斷;
②根據(jù)平行線的傳遞性,可得l∥n,故l⊥α時,一定有n⊥α;
③由垂直于同一平面的兩直線平行得m∥n,再根據(jù)平行線的傳遞性,即可得l∥n;
④m?α,n⊥α,則n⊥m,根據(jù)l⊥n,可得l,m平行、相交、異面都有可能.
解答:解:①根據(jù)線面垂直的判定,當m,n相交時,結(jié)論成立,故①不正確;
②根據(jù)平行線的傳遞性,可得l∥n,故l⊥α時,一定有n⊥α,故②正確;
③由垂直于同一平面的兩直線平行得m∥n,再根據(jù)平行線的傳遞性,即可得l∥n,故③正確.
④m?α,n⊥α,則n⊥m,∵l⊥n,∴可以選用正方體模型,可得l,m平行、相交、異面都有可能,如圖所示,故④不正確
故正確的命題是②③
故選B.
點評:本題考查空間中直線與直線、平面之間的位置關(guān)系,熟練掌握理解空間中線與線,線與面,面與面的位置關(guān)系及判定定理及較好的空間想像能力是準確解答此類題目的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①設(shè)x1,x2∈R,則x1>1且x2>1的充要條件是x1+x2>2且x1x2>1;
②任意的銳角三角形ABC中,有sinA>cosB成立;
③平面上n個圓最多將平面分成2n2-4n+4個部分;
④空間中直角在一個平面上的正投影可以是鈍角.
其中真命題的序號是
 
(要求寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出下列四個命題:
①設(shè)x1,x2∈R,則x1>1且x2>1的充要條件是x1+x2>2且x1x2>1;
②任意的銳角三角形ABC中,有sinA>cosB成立;
③平面上n個圓最多將平面分成2n2-4n+4個部分;
④空間中直角在一個平面上的正投影可以是鈍角.
其中真命題的序號是______(要求寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考數(shù)學專項復(fù)習:創(chuàng)新題(3)(解析版) 題型:解答題

給出下列四個命題:
①設(shè)x1,x2∈R,則x1>1且x2>1的充要條件是x1+x2>2且x1x2>1;
②任意的銳角三角形ABC中,有sinA>cosB成立;
③平面上n個圓最多將平面分成2n2-4n+4個部分;
④空間中直角在一個平面上的正投影可以是鈍角.
其中真命題的序號是    (要求寫出所有真命題的序號).

查看答案和解析>>

同步練習冊答案