已知數(shù)列的前項和為,且.
(Ⅰ)求;(Ⅱ)設,求數(shù)列的通項公式。

(1)
(2))

解析試題分析:解:(1)由已知,即,  3分
,即;   6分
時,,
,易知數(shù)列各項不為零(注:可不證不說),
恒成立,
是首項為,公比為-的等比數(shù)列,   10分
, ,即.    12分
考點:等比數(shù)列
點評:主要是考查了數(shù)列的前n項和與通項公式的之間的關(guān)系的運用,屬于中檔題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

在等比數(shù)列中,
(1)和公比;
(2)前6項的和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列是各項均不為0的等差數(shù)列,公差為,為其前n項和,且滿足,.數(shù)列滿足,, 為數(shù)列的前項和.
(1)求數(shù)列的通項公式
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列為等比數(shù)列, 其前項和為, 已知, 且對于任意的, , 成等差;求數(shù)列的通項公式;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設等比數(shù)列的前項和為,已知,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

等差數(shù)列中,,公差為整數(shù),若
(1)求公差的值;                 (2)求通項公式。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an},其前n項和為Sn
(1)若對任意的n∈N,a2n﹣1,a2n+1,a2n組成公差為4的等差數(shù)列,且,求n的值;
(2)若數(shù)列{}是公比為q(q≠﹣1)的等比數(shù)列,a為常數(shù),求證:數(shù)列{an}為等比數(shù)列的充要條件為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知都是正數(shù),且成等比數(shù)列,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{}是等差數(shù)列,且滿足:a1+a2+a3=6,a5=5;
數(shù)列{}滿足:(n≥2,n∈N﹡),b1=1.
(Ⅰ)求
(Ⅱ)記數(shù)列(n∈N﹡),若{}的前n項和為,求.

查看答案和解析>>

同步練習冊答案