如圖,平行六面體中,側(cè)棱長為3,底面是邊長為2的菱形,點E在棱上,則的最小值為(  )
A.B.5C.D.7
A

試題分析:

解:將面C1CB1B,B1BAA1打開,如圖,由已知得C,B,A共線,連接AC1,則AC1為AE+C1E的最小值,
平行六面體中,側(cè)棱B1B長為3,底面是邊長為1的菱形,∠A1AB=120°,∠A1AD=60°,點E在棱B1B上,
∴CA=1+1=2,C1C=3,∴cos∠C1CA=cos60°= 解得C1A=,故AE+C1E的最小值為,故選A.
點評:本題考查線段和最小值的求法,解題時要認(rèn)真審題,仔細(xì)解答,注意等價轉(zhuǎn)化思想的合理運用
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若一條直線和平面所成的角為,則此直線與該平面內(nèi)任意一條直線所成角的取值范圍是                      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是正方形,⊥面,且,是側(cè)棱的中點.

(1)求證∥平面
(2)求證平面平面;
(3)求直線與底面所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

長方體中,所成的角的大小是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在空間四邊形ABCD中,已知AD=1,BC,且ADBC,對角線BDAC, ACBD所成的角是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在長方體中,,,則異面直線所成的角為 (  )
A.B.C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正四棱柱中,,E為中點,則異面直線BE與所成角的余弦值為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
(本題滿分12分)
如圖,已知三棱錐的側(cè)棱兩兩垂直,
,的中點。
(1)求異面直線所成角的余弦值;
(2)求直線BE和平面的所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)
如圖,在棱長為1的正方體中,、分別為的中點.

(1)求異面直線所成的角的余弦值;
(2)求平面與平面所成的銳二面角的余弦值;

查看答案和解析>>

同步練習(xí)冊答案