下面四個(gè)圖象中,有一個(gè)是函數(shù)f(x)=x3+ax2+(a2-1)x+1(a∈R)的導(dǎo)函數(shù)y=f′(x)的圖象,則f(-1)等于(  )

A. B.- C. D.-

 

D

【解析】∵f′(x)=x2+2ax+a2-1,∴f′(x)的圖象開口向上,若圖象不過原點(diǎn),則a=0時(shí),f(-1)=,若圖象過原點(diǎn),則a2-1=0,又對(duì)稱軸x=-a>0,∴a=-1,∴f(-1)=-

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科不等式恒成立問題(解析版) 題型:選擇題

若不等式對(duì)滿足的所有都成立,則x的取值范圍是(    )

A.

B.

C.

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(四)(解析版) 題型:選擇題

變量x,y滿足約束條件,則目標(biāo)函數(shù)z=3x-y的取值范圍是(  )

A.[-,6] B.[-,-1]

C.[-1,6] D.[-6,]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(六)(解析版) 題型:填空題

已知ω>0,函數(shù)f(x)=sin(ωx+)在(,π)上單調(diào)遞減,則ω的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(六)(解析版) 題型:選擇題

已知點(diǎn)F1、F2分別是雙曲線(a>0,b>0)的左、右焦點(diǎn),過F1且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若△ABF2是銳角三角形,則該雙曲線離心率的取值范圍是(  )

A.(1,) B.(,2)

C.(1+,+∞) D.(1,1+)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(五)(解析版) 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx.

(1)若函數(shù)y=f(x)在x=2處有極值-6,求y=f(x)的單調(diào)遞減區(qū)間;

(2)若y=f(x)的導(dǎo)數(shù)f′(x)對(duì)x∈[-1,1]都有f′(x)≤2,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(五)(解析版) 題型:填空題

長(zhǎng)度都為2的向量,的夾角為,點(diǎn)C在以O(shè)為圓心的圓弧AB(劣弧)上,=m+n,則m+n的最大值是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(二)(解析版) 題型:解答題

已知△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,sin Ccos C-cos2C=,且c=3.

(1)求角C;

(2)若向量m=(1,sin A)與n=(2,sin B)共線,求a、b的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:解答題

某造紙廠擬建一座底面圖形為矩形且面積為162平方米的三級(jí)污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價(jià)為400元/米,中間兩道隔墻建造單價(jià)為248元/米,池底建造單價(jià)為80元/平方米,水池所有墻的厚度忽略不計(jì).

(1)試設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總造價(jià)最低,并求出最低總造價(jià);

(2)若由于地形限制,該池的長(zhǎng)和寬都不能超過16米,試設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總造價(jià)最低,并求出最低總造價(jià).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案