如圖所示,PA為圓的切線,A為切點(diǎn),PBC是過點(diǎn)O的割線,PA=10,PB=5,的平分線與BC和圓分別交于點(diǎn)D和E。

(1)求證:
(2)求AD·AE的值。

( 1)直接根據(jù)∠PAB=∠ACP以及∠P公用,得到△PAB∽△PCA,進(jìn)而求出結(jié)論;
(2)90

解析試題分析:( I)直接根據(jù)∠PAB=∠ACP以及∠P公用,得到△PAB∽△PCA,進(jìn)而求出結(jié)論;

( II)先根據(jù)切割線定理得到PA2=PB•PC;結(jié)合第一問的結(jié)論以及勾股定理求出;再結(jié)合條件得到△ACE∽△ADB,進(jìn)而求出結(jié)果.
解:( I)∵PA為⊙O的切線,
∴∠PAB=∠ACP,…(1分)
又∠P公用,∴△PAB∽△PCA.…(2分)
.…(3分)
( II)∵PA為⊙O的切線,PBC是過點(diǎn)O的割線,
∴PA2=PB•PC.…(5分)
又∵PA=10,PB=5,∴PC=20,BC=15.…(6分)
由( I)知,,
∵BC是⊙O的直徑,
∴∠CAB=90°.
∴AC2+AB2=BC2=225,
 …(7分)
連接CE,則∠ABC=∠E,…(8分)
又∠CAE=∠EAB,
∴△ACE∽△ADB,
 …(9分)
.…(10分)

 
考點(diǎn):與圓有關(guān)的比例線段、相似三角形
點(diǎn)評(píng):本題主要考查與圓有關(guān)的比例線段、相似三角形的判定及切線性質(zhì)的應(yīng)用.解決本題第一問的關(guān)鍵在于先由切線PA得到∠PAB=∠ACP.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,自⊙外一點(diǎn)引切線與⊙切于點(diǎn),的中點(diǎn),過引割線交⊙兩點(diǎn). 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,的切線,過圓心的直徑,相交于兩點(diǎn),連結(jié). (1) 求證:;
(2) 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在Rt△ABC中,, BE平分∠ABC交AC于點(diǎn)E, 點(diǎn)D在AB上,

(Ⅰ)求證:AC是△BDE的外接圓的切線;
(Ⅱ)若,求EC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知C點(diǎn)在⊙O直徑BE的延長線上,CA切⊙O于A 點(diǎn),CD是∠ACB的平分線且交AE于點(diǎn)F,交AB于點(diǎn)D

(1)求∠ADF的度數(shù); (2)若AB=AC,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直線過圓心,交⊙,直線交⊙(不與重合),直線與⊙相切于,交,且與垂直,垂足為,連結(jié).

求證:(1);      
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,如圖,在平行四邊形ABCD中,延長DA到點(diǎn)E,延長BC到點(diǎn)F,使得AE=CF,連接EF,分別交AB,CD于點(diǎn)M,N,連接DM,BN.

(1)求證:△AEM ≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,的外接圓,直線的切線,切點(diǎn)為,直線,交、交,上一點(diǎn),且.

求證:(Ⅰ);
(Ⅱ)點(diǎn)、、共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講
如圖,已知是⊙的直徑,直線與⊙相切于點(diǎn)平分.
(Ⅰ)求證:;
(Ⅱ)若,求的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案