設(shè)F1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),過(guò)F1斜率為1的直線?與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求E的離心率;
(2)設(shè)點(diǎn)P(0,-1)滿足|PA|=|PB|,求E的方程
【答案】分析:(I)根據(jù)橢圓的餓定義可 值|AF2|+|BF2|+|AB|=4a,進(jìn)而根據(jù)|AF2|,|AB|,|BF2|成等差數(shù)表示出|AB|,進(jìn)而可知直線l的方程,設(shè)A(x1,y1),B(x2,y2),代入直線和橢圓方程,聯(lián)立消去y,根據(jù)韋達(dá)定理表示出x1+x2和x1x2進(jìn)而根據(jù),求得a和b的關(guān)系,進(jìn)而求得a和c的關(guān)系,離心率可得.
(II)設(shè)AB的中點(diǎn)為N(x,y),根據(jù)(1)則可分別表示出x和y,根據(jù)|PA|=|PB|,推知直線PN的斜率,根據(jù)求得c,進(jìn)而求得a和b,橢圓的方程可得.
解答:解:(I)由橢圓定義知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,
l的方程為y=x+c,其中
設(shè)A(x1,y1),B(x2,y2),則A、B兩點(diǎn)坐標(biāo)滿足方程組
化簡(jiǎn)的(a2+b2)x2+2a2cx+a2(c2-b2)=0

因?yàn)橹本AB斜率為1,得,故a2=2b2
所以E的離心率
(II)設(shè)AB的中點(diǎn)為N(x,y),由(I)知
由|PA|=|PB|,得kPN=-1,

得c=3,從而
故橢圓E的方程為
點(diǎn)評(píng):本題主要考查圓錐曲線中的橢圓性質(zhì)以及直線與橢圓的位置關(guān)系,涉及等差數(shù)列知識(shí),考查利用方程思想解決幾何問(wèn)題的能力及運(yùn)算能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
短軸長(zhǎng)為2,P(x0,y0)(x0≠±a)是橢圓上一點(diǎn),A,B分別是橢圓的左、右頂點(diǎn),直線PA,PB的斜率之積為-
1
4

(1)求橢圓的方程;
(2)當(dāng)∠F1PF2為鈍角時(shí),求P點(diǎn)橫坐標(biāo)的取值范圍;
(3)設(shè)F1,F(xiàn)2分別是橢圓的左右焦點(diǎn),M、N是橢圓右準(zhǔn)線l上的兩個(gè)點(diǎn),若
F1M
F2N
=0
,求MN的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年豐臺(tái)區(qū)二模)(14分)

設(shè)F1、F2分別是橢圓的左、右焦點(diǎn)。

   (I)若M是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值和最小值;

    (II)設(shè)過(guò)定點(diǎn)(0,2)的直線l與橢圓交于不同兩點(diǎn)A、B,且∠AOB為鈍角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2分別是橢圓的左、右焦點(diǎn),P為橢圓上任一點(diǎn),點(diǎn)M的坐標(biāo)為(6,4),則|PM|+|PF1|的最大值為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市南匯區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)F1、F2分別是橢圓的左、右焦點(diǎn),其右焦點(diǎn)是直線y=x-1與x軸的交點(diǎn),短軸的長(zhǎng)是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值和最小值;
(3)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),點(diǎn)A(5,0),求線段AP中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省廣州市高三上學(xué)期第3次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)F1、F2分別是橢圓的左、右焦點(diǎn),P為橢圓上任一點(diǎn),點(diǎn)M的坐標(biāo)為(6,4),則|PM|+|PF1|的最大值為                   .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案