解答:解:(1)解方程x
2-6x+5=0 得x
1=1,x
2=5,---------------------------------------------1分
∴
y1==5,------------------------------------------------------------------------------2分
x3=(5+)x2=26,
∴
y2==,--------------------------------------------------------------------------3分
x4=(5+)x3=135,
∴
y3==--------------------------------------------4分
(2)由
xn+2=(5+)xn+1 得
=5+ 即
yn+1=5+?y
n+1y
n=5y
n+1----------------------6分
當(dāng)n≥2 時(shí)y
n>5,于是z
1=y
1y
2=26,z
n=y
ny
n+1=5y
n+1>26 (n≥2 )
∴
n |
|
i=1 |
zi=z1+z2+…+zn≥26n--------------------------------------------------------------------9分
(3)當(dāng)n≥2 時(shí),有
|yn+1-yn|=|5+-(5+)|=||≤|yn-yn-1| ≤|yn-1-yn-2| ≤…≤|y2-y1|=
•----------------------------------------12分
∵|y
2n-y
n|=|y
2n-y
2n-1+y
2n-1-y
2n-2+y
2n-2-…+y
n+1-y
n|
∴|y
2n-y
n|≤|y
n+1-y
n|+…+|y
2n-1-y
2n-2|+|y
2n-y
2n-1|
≤[+…++]=
•<•=•∴對?n∈N
* 有
|y2n-yn|<• (n∈N
*)----------------------------------------------14分