10.已知sinα-2cosα=0,則sin($\frac{π}{2}$+2α)的值為( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

分析 由同角的商數(shù)關(guān)系求出tanα,再由誘導(dǎo)公式、二倍角公式,即可得到答案.

解答 解:由sinα-2cosα=0,即有sinα=2cosα,
則tanα=2,
即有sin($\frac{π}{2}$+2α)=cos2α=cos2α-sin2α=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=-$\frac{3}{5}$.
故選:D.

點(diǎn)評(píng) 本題考查三角函數(shù)的求值,考查同角的商數(shù)關(guān)系和兩角和的正切公式,考查運(yùn)算能力,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知角α的終邊經(jīng)過點(diǎn)(-4,3),則cosα=$-\frac{4}{5}$,sin(π+α)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)+a(其中a為常數(shù)).
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),f(x)的最大值為4,求a的值;
(3)求出使f(x)取最大值時(shí)x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)y=(2)x+m不經(jīng)過第二象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)1+cos2θ=3sinθcosθ,則tanθ=1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.使內(nèi)接橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的矩形面積最大,矩形的長為$\sqrt{2}$a,寬為$\sqrt{2}$b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.長度等于半徑的圓弧所對的圓心角的大小為1弧度.(只寫正角即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)P是橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{10}$=1上的點(diǎn).若F1、F2是橢圓的兩個(gè)焦點(diǎn),則|PF1|+|PF2|等于( 。
A.4B.$\sqrt{10}$C.8D.2$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓5x2-ky2=5的一個(gè)焦點(diǎn)是(0,2),那么k等于(  )
A.-1B.1C.$\sqrt{5}$D.$-\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案