如圖,正三棱柱ABC-A
1B
1C
1的各棱長都相等,M、E分別是AB和AB
1的中點,點F在BC上且滿足BF:FC=1:3.
(1)求證:BB
1∥平面EFM;
(2)求四面體M-BEF的體積.
(1)證明:連結(jié)EM、MF,
∵M(jìn)、E分別是正三棱柱的棱AB和AB
1的中點,
∴BB
1∥ME,
又BB
1?平面EFM,ME?平面EFM,
∴BB
1∥平面EFM.
(2)正三棱柱中B
1B⊥底面ABC,
由(1)BB
1∥ME,
∴ME⊥平面MBF,
根據(jù)條件得出BF=1,BM=2,∠MBF=60°,
∴
S△BMF=,
又EM=2,
因此
VM-BEF=VE-MBF=S△BMF•EM=.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
一個圓錐的體積是a立方米,則和它等底等高的圓柱體的體積是( 。┝⒎矫祝
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,已知平面α∩β=l,A、B是l上的兩個點,C、D在平面β內(nèi),且DA⊥α,CB⊥α,AD=4,AB=6,BC=8,在平面α上有一個動點P,使得∠APD=∠BPC,則P-ABCD體積的最大值是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
正四棱臺AC1的高是8cm,兩底面的邊長分別為4cm和16cm,求這個棱臺的側(cè)棱的長、斜高、表面積、體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,在斜三棱柱ABC-A
1B
1C
1中,∠A
1AC=∠ACB=
,∠AA
1C=
,側(cè)棱BB
1與底面所成的角為
,AA
1=4
,BC=4.求斜三棱柱ABC-A
1B
1C
1的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
國際乒乓球比賽已將“小球”改為,“大球”,“小球”的外徑為38mm,“大球”的外徑為40mm,則“大球”的表面積比“小球”的表面積增加了______mm2.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若長方體的一個頂點出發(fā)的三條棱長分別為3,4,5,則其外接球的表面積為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
平面上有四點,連接其中的兩點的一切直線中的任何兩條直線不重合、不平行、不垂直,從每一點出發(fā),向其他三點作成的一切直線作垂線,則這些垂線的交點個數(shù)最多為( 。
查看答案和解析>>