【題目】隨機取一個由0和1構(gòu)成的8位數(shù),它的偶數(shù)位數(shù)字之和與奇數(shù)位數(shù)字之和相等的概率為____________ .
【答案】
【解析】
該8位數(shù)首位數(shù)字必須為1,分別計算出奇數(shù)位上和偶數(shù)位上1的個數(shù),結(jié)合組合知識求出基本事件總數(shù)和偶數(shù)位數(shù)字之和與奇數(shù)位數(shù)字之和相等包含的基本事件個數(shù)即可得解.
設(shè)n是滿足題意的8位數(shù),故知其偶數(shù)位上1的個數(shù)和在奇數(shù)位上1的個數(shù)相同,從而在奇數(shù)位上與偶數(shù)位上1的個數(shù)可能為1、2、3或4.注意到首位為1,下面分情況討論:
(1)奇數(shù)位上與偶數(shù)位上有1個1,3個0共有種可能;
(2)奇數(shù)位上與偶數(shù)位上有2個1,2個0,共有種可能;
(3)奇數(shù)位上與偶數(shù)位上有3個1,1個0,有種可能;
(4)奇數(shù)位上與偶數(shù)位上有4個1,共有種可能.
合計共有4+18+12+1=35個滿足條件的自然數(shù)n.又因為0和1構(gòu)成的8位數(shù)共有個,從而概率為.
故答案為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖象如圖所示,先將函數(shù)圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?/span>6倍,縱坐標(biāo)不變,再將所得函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,下列結(jié)論正確的是( )
A.函數(shù)是奇函數(shù)B.函數(shù)在區(qū)間上是增函數(shù)
C.函數(shù)圖象關(guān)于對稱D.函數(shù)圖象關(guān)于直線對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD為矩形,點A、E、B、F共面,和均為等腰直角三角形,且若平面⊥平面
(Ⅰ)證明:平面平面ADF
(Ⅱ)問在線段EC上是否存在一點G,使得BG∥平面若存在,求出此時三棱錐G一ABE與三棱錐的體積之比,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上的點到焦點的距離為.
(1)求的值;
(2)如上圖,已知動線段(在的右邊)在直線上,且,現(xiàn)過作的切線,取左邊的切點,過作的切線,取右邊的切點為,當(dāng),求點的橫坐標(biāo)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m為整數(shù),.整數(shù)數(shù)列滿足:不全為零,且對任意正整數(shù)n,均有.證明:若存在整數(shù)r、s(r>s≥2)使得,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△的內(nèi)角,,的對邊分別為,,,若,__________,求△的周長和面積.
在①,,②,,③,這三個條件中,任選一個補充在上面問題中的橫線處,并加以解答.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi),已知,過直線,分別作平面,,使銳二面角為,銳二面角為,則平面與平面所成的銳二面角的余弦值為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程,點在直線上,直線與曲線交于兩點.
(1)求曲線的普通方程及直線的參數(shù)方程;
(2)求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com