D
分析:先求出函數(shù)的定義域,然后將復合函數(shù)分解為內、外函數(shù),分別討論內外函數(shù)的單調性,進而根據(jù)復合函數(shù)單調性“同增異減”的原則,得到函數(shù)y=log3(x2-2x-3)的單調遞增區(qū)間
解答:函數(shù)y=log3(x2-2x-3)的定義域為(-∞,-1)∪(3,+∞)
令t=x2-2x-3,則y=log3t
∵y=log3t為增函數(shù)
t=x2-2x-3在(-∞,-1)上為減函數(shù);
在(3,+∞)為增函數(shù)
∴函數(shù)y=log3(x2-2x-3)的單調遞增區(qū)間為(3,+∞)
故選D
點評:本題考查的知識點是復合函數(shù)的單調性,二次函數(shù)的性質,對數(shù)函數(shù)的單調性,其中復合函數(shù)單調性“同增異減”是解答本題的關鍵,本題易忽略真數(shù)大于為,而錯選A