16.設(shè)集合M={0,1,2},N={x|x2-3x+2≤0},則M∩N={1,2}.

分析 求出N中不等式的解集確定出N,找出M與N的交集即可.

解答 解:由N中不等式變形得:(x-1)(x-2)≤0,
解得:1≤x≤2,即N=[1,2],
∵M(jìn)={0,1,2},
∴M∩N={1,2},
故答案為:{1,2}

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=log2x的定義域是[2,8].
(1)設(shè)g(x)=f(2x)+f(x+2).求g(x)的解析式及定義域;
(2)求函數(shù)y=f2(x)+f(x2)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知點P為拋物線C:x2=y上的一點,F(xiàn)為拋物線C的焦點,若|PF|=1,則點P的縱坐標(biāo)為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在等差數(shù)列{an}中,公差d=2,a2是a1與a4的等比中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}={a_{\frac{n(n+1)}{2}}}$,數(shù)列$\left\{{\frac{1}{b_n}}\right\}$的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,則輸出的S=( 。
A.1023B.512C.511D.255

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線x2-$\frac{y^2}{b^2}$=1(b>0)的焦距為4,則b=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知m,n是不同的直線,α,β是不同的平面,則下列結(jié)論正確的是(  )
A.若m∥α,n∥α則m∥nB.若m?α,m∥n,則n∥αC.若m⊥α,α⊥β,則m∥βD.若m⊥α,n∥α,則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.Rt△ABC的角A,B,C所對的邊分別是a,b,c(其中c為斜邊),分別以a,b,c邊所在的直線為旋轉(zhuǎn)軸,將△ABC旋轉(zhuǎn)一周得到的幾何體的體積分別是V1,V2,V3,則( 。
A.V1+V2=V3B.$\frac{1}{V_1}+\frac{1}{V_2}=\frac{1}{V_3}$
C.$V_1^2+V_2^2=V_3^2$D.$\frac{1}{V_1^2}+\frac{1}{V_2^2}=\frac{1}{V_3^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的左、右焦點分別為F1,F(xiàn)2,過F2的直線與雙曲線C的右支相交于P,Q兩點,若PQ⊥PF1,且|PF1|=|PQ|,則雙曲線的離心率e=( 。
A.$\sqrt{2}$+1B.2$\sqrt{2}$+1C.$\sqrt{5+2\sqrt{2}}$D.$\sqrt{5-2\sqrt{2}}$

查看答案和解析>>

同步練習(xí)冊答案