某同學(xué)在研究函數(shù)f(x)=x2ex的性質(zhì)時(shí),得到如下的結(jié)論:
①f(x)的單調(diào)遞減區(qū)間是(-2,0);
②f(x)無最小值,無最大值
③f(x)的圖象與它在(0,0)處切線有兩個(gè)交點(diǎn)
④f(x)的圖象與直線x-y+2012=0有兩個(gè)交點(diǎn)
其中正確結(jié)論的序號(hào)是
①④
①④
分析:①求導(dǎo)函數(shù),令f′(x)<0,可得f(x)的單調(diào)遞減區(qū)間;
②令f′(x)>0,可得f(x)的單調(diào)遞增區(qū)間,即可得到結(jié)論;
③求得函數(shù)在(0,0)處切線方程,結(jié)合f(x)=x2ex>0,可得結(jié)論;
④由②及f(x)=x2ex>0,即可得到f(x)的圖象與直線x-y+2012=0有兩個(gè)交點(diǎn).
解答:解:求導(dǎo)函數(shù),可得f′(x)=x2ex=(2x+x2)ex
①令f′(x)<0,可得2x+x2<0,∴-2<x<0,∴f(x)的單調(diào)遞減區(qū)間是(-2,0),即①正確;
②令f′(x)>0,可得2x+x2>0,∴x<-2或x>0,∴f(x)的單調(diào)遞增區(qū)間是(-∞,-2),(0,+∞),∴函數(shù)在x=-2處取得極大值,且為最大值;在x=0處取得極小值,且為最小值,即②不正確;
③f′(0)=0,f(0)=0,則函數(shù)在(0,0)處切線方程為y=0,∵f(x)=x2ex>0,∴f(x)的圖象與它在(0,0)處切線有一個(gè)交點(diǎn)(0,0),即③不正確;
④由②及f(x)=x2ex>0,即可得到f(x)的圖象與直線x-y+2012=0有兩個(gè)交點(diǎn),即④正確,
綜上可知,正確結(jié)論的序號(hào)是①④
故答案為:①④
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)在研究函數(shù)f(x)=
x1+|x|
(x∈R)時(shí),分別給出下面幾個(gè)結(jié)論:
①f(-x)+f(x)=0在x∈R時(shí)恒成立;
②函數(shù)f(x)的值域?yàn)椋?1,1);
③若x1≠x2,則一定有f(x1)≠f(x2);
④函數(shù)g(x)=f(x)-x在R上有三個(gè)零點(diǎn).
其中正確結(jié)論的序號(hào)有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)在研究函數(shù) f (x)=
x1+|x|
(x∈R) 時(shí),分別給出下面幾個(gè)結(jié)論:
①等式f(-x)+f(x)=0在x∈R時(shí)恒成立;
②函數(shù) f (x) 的值域?yàn)?nbsp;(-1,1);
③若x1≠x2,則一定有f (x1)≠f (x2);
④方程f(x)-x=0有三個(gè)實(shí)數(shù)根.
其中正確結(jié)論的序號(hào)有
①②③
①②③
.(請(qǐng)將你認(rèn)為正確的結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)在研究函數(shù)f(x)=
x
1+|x|
(x∈R)時(shí),給出了下面幾個(gè)結(jié)論:
①函數(shù)f(x)的值域?yàn)椋?1,1);②若f(x1)=f(x2),則恒有x1=x2;③f(x)在(-∞,0)上是減函數(shù);
④若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=
x
1+n|x|
對(duì)任意n∈N*恒成立,
上述結(jié)論中所有正確的結(jié)論是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)在研究函數(shù)f(x)=
2x|x|+1
(x∈R)
時(shí),分別得出如下幾個(gè)結(jié)論:
①等式f(-x)+f(x)=0在x∈R時(shí)恒成立;
②函數(shù)f(x)的值域?yàn)椋?2,2);
③若x1≠x2,則一定有f(x1)≠f(x2);
④函數(shù)y(x)=f(x)-2x在R上有三個(gè)零點(diǎn).
其中正確的序號(hào)有
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)某同學(xué)在研究函數(shù)f(x)=
x1+|x|
 (x∈R)
時(shí),分別給出下面幾個(gè)結(jié)論:
①等式f(-x)+f(x)=0對(duì)x∈R恒成立;
②若f(x1)≠f(x2),則一定有x1≠x2
③若m>0,方程|f(x)|=m有兩個(gè)不等實(shí)數(shù)根;
④函數(shù)g(x)=f(x)-x在R上有三個(gè)零點(diǎn).
其中正確結(jié)論的序號(hào)有
①②
①②
.(請(qǐng)將你認(rèn)為正確的結(jié)論的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案