已知橢圓C焦點在x軸上,其長軸長為4,離心率為,
(1)設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍;
(2)如圖,過原點O任意作兩條互相垂直的直線與橢圓(a>b>0)相交于P,S,R,Q四點,設(shè)原點O到四邊形PQSR一邊的距離為d,試求d=1時a,b滿足的條件.
【答案】分析:(1)由題設(shè)知.由此得.設(shè)直線l:y=kx+2,A(x1,y1),B(x2,y2).由得(1+4k2)x2+16kx+12=0.由△=(16k)2-4×12(1+4k2)>0,知.又,由.得-2<k<2.由此得:
(2)由橢圓的對稱性可知PQSR是菱形,原點O到各邊的距離相等.當(dāng)P在y軸上,Q在x軸上時,直線PQ的方程為,由d=1得,當(dāng)P不在y軸上時,設(shè)直線PS的斜率為k,P(x1,kx1),則直線RQ的斜率為,,得(1),同理.由此知a,b滿足條件
解答:解:(1)∵橢圓C焦點在x軸上,其長軸長為4,離心率為,
.解得a=2,b=1,∴
顯然直線x=0不滿足題設(shè)條件,可設(shè)直線l:y=kx+2,A(x1,y1),B(x2,y2).(5分)
得(1+4k2)x2+16kx+12=0.∵△=(16k)2-4×12(1+4k2)>0,


.∴
所以=∴-2<k<2.
由此得:
(2)由橢圓的對稱性可知PQSR是菱形,原點O到各邊的距離相等.
當(dāng)P在y軸上,Q在x軸上時,直線PQ的方程為,由d=1得,
當(dāng)P不在y軸上時,設(shè)直線PS的斜率為k,P(x1,kx1),則直線RQ的斜率為,
,得(1),同理
在Rt△OPQ中,由,即|PQ|2=|OP|2•|OQ|2
所以,化簡得,
,

綜上,d=1時a,b滿足條件
點評:本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與橢圓的相關(guān)知識,解題時要注意合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C焦點在x軸上,其長軸長為4,離心率為
3
2

(1)設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍;
(2)如圖,過原點O任意作兩條互相垂直的直線與橢圓
x2
a2
+
y2
b2
=1
(a>b>0)相交于P,S,R,Q四點,設(shè)原點O到四邊形PQSR一邊的距離為d,試求d=1時a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做.
已知橢圓的焦點在x軸上,它的一個頂點恰好是拋物線x2=4y的焦點,離心率e=
2
5
,過橢圓的右焦點F作與坐標(biāo)軸不垂直的直線l,交橢圓于A、B兩點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點M(m,0)是線段OF上的一個動點,且(
MA
+
MB
)⊥
AB
,求m的取值范圍;
(3)設(shè)點C是點A關(guān)于x軸的對稱點,在x軸上是否存在一個定點N,使得C、B、N三點共線?若存在,求出定點N的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C焦點在x軸上,其長軸長為4,離心率為
3
2

(1)設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍;
(2)如圖,過原點O任意作兩條互相垂直的直線與橢圓
x2
a2
+
y2
b2
=1
(a>b>0)相交于P,S,R,Q四點,設(shè)原點O到四邊形PQSR一邊的距離為d,試求d=1時a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點在x軸上,其右頂點關(guān)于直線x-y+4=0的對稱點在直線: 上.

(I)求橢圓方程;

(II)過橢圓左焦點F的直線交橢圓于A、B兩點,交直線于點C,設(shè)O為坐標(biāo)原點,且,求的面積.

查看答案和解析>>

同步練習(xí)冊答案