已知z1=1-3i,z2=6-8i.若
1
z
+
1
z1
=
1
z2
,求z的值.
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由條件可得z=
z1•z2
z1-z2
,再利用兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法法則,虛數(shù)單位i的冪運(yùn)算性質(zhì)化簡(jiǎn)可得結(jié)果.
解答: 解:∵z1=1-3i,z2=6-8i,
1
z
+
1
z1
=
1
z2
,
∴z=
z1•z2
z1-z2
=
(1-3i)(6-8i)
1-3i-(6-8i)
=
-18-26i
-5+5i
=
(-18-26i)(-5-5i)
(-5+5i)(-5-5i)
=
-40+220i
25+25
=-
4
5
+
22
5
i.
點(diǎn)評(píng):本題主要考查復(fù)數(shù)的基本概念,兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法法則,虛數(shù)單位i的冪運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若球的表面積擴(kuò)大到原來(lái)的2倍,則球的體積擴(kuò)大到原來(lái)的(  )
A、2倍;
B、
2
C、2
2
D、3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=cos2x-sin2x.
(1)求f(
π
3
)的值及f(x)的最大值;
(2)求f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l過(guò)點(diǎn)(0,1),并與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)相交于不同的A、B兩點(diǎn),離心率為2,右焦點(diǎn)F(c,0)到右準(zhǔn)線的距離等于
3
2

(1)求雙曲線方程;    
(2)求AB的長(zhǎng)度;
(3)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出k的值;若不存在,寫出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為a的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=
2
2
AD,若E,F(xiàn)分別為PC,BD的中點(diǎn).
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)求三棱錐F-DEC的體積;
(Ⅲ)在線段AB上是否存在一點(diǎn)G,使得平面EFG⊥平面PDC?若存在,請(qǐng)說(shuō)明其位置,并加以證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=
3x2+7x-4
x2-3
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓A過(guò)點(diǎn)P(
2
,
2
),且與圓B:(x+2)2+(y-2)2=r2(r>0)關(guān)于直線x-y+2=0對(duì)稱.
(1)求圓A和圓B方程;   
(2)求兩圓的公共弦長(zhǎng);
(3)過(guò)平面上一點(diǎn)Q(x0,y0)向圓A和圓B各引一條切線,切點(diǎn)分別為C、D,設(shè)
QD
QC
=2,求證:平面上存在一定點(diǎn)M使得Q到M的距離為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,a≠1,函數(shù)y=alg(x2-2x+3)有最大值,求函數(shù)f(x)=loga(3-2x-x2)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-5x+6=0},B={x|ax-6=0}且∁RA⊆∁RB,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案