已知集合,,設(shè)是等差數(shù)列的前項(xiàng)和,的任一項(xiàng),且首項(xiàng)中的最大數(shù), .

1)求數(shù)列的通項(xiàng)公式;

2)若數(shù)列滿足,求的值.

 

【答案】

1;2.

【解析】

試題分析:1首先由題設(shè)知: 集合中所有元素可以組成以為首項(xiàng),為公差的遞減等差數(shù)列;集合中所有的元素可以組成以為首項(xiàng),為公差的遞減等差數(shù)列.

得到中的最大數(shù)為,得到等差數(shù)列的首項(xiàng).

通過設(shè)等差數(shù)列的公差為,建立的方程組,

根據(jù),求得

由于中所有的元素可以組成以為首項(xiàng),為公差的遞減等差數(shù)列,

所以,,得到.

2由(1)得到,

于是可化為等比數(shù)列的求和.

試題解析:1)由題設(shè)知: 集合中所有元素可以組成以為首項(xiàng),為公差的遞減等差數(shù)列;集合中所有的元素可以組成以為首項(xiàng),為公差的遞減等差數(shù)列.

由此可得,對任意的,

中的最大數(shù)為, 3

設(shè)等差數(shù)列的公差為,,

因?yàn)?/span>, ,

由于中所有的元素可以組成以為首項(xiàng),為公差的遞減等差數(shù)列,

所以,,所以

所以數(shù)列的通項(xiàng)公式為8

2 9

于是有

12

考點(diǎn):等差數(shù)列的通項(xiàng)公式、求和公式,一元一次不等式的解法,等比數(shù)列的求和公式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對任意n∈N*,Sn是an2和an的等差中項(xiàng).
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明
1
S1
+
1
S2
+…+
1
Sn
<2;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m的一切正整數(shù)n,不等式Sn-1005>
a
2
n
2
恒成立,求這樣的正整數(shù)m共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對任意n∈N*,Sn
1
2
an2和an的等差中項(xiàng)
(Ⅰ)證明:數(shù)列為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明:
1
2
1
S1
+
1
S2
+…+
1
Sn
<1
;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m的一切正整數(shù)n,不等式2Sn-4200>
a
2
n
2
恒成立,試問:這樣的正整數(shù)m共有多少個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省泰州市泰興三中高三(下)期初數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對任意n∈N*,Snan2和an的等差中項(xiàng)
(Ⅰ)證明:數(shù)列為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明:;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m的一切正整數(shù)n,不等式恒成立,試問:這樣的正整數(shù)m共有多少個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年湖南省衡陽八中高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對任意n∈N*,Sn是an2和an的等差中項(xiàng).
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明++…+<2;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m的一切正整數(shù)n,不等式Sn-1005>恒成立,求這樣的正整數(shù)m共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)單元檢測:數(shù)列(1)(解析版) 題型:解答題

設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對任意n∈N*,Sn是an2和an的等差中項(xiàng).
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明++…+<2;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m的一切正整數(shù)n,不等式Sn-1005>恒成立,求這樣的正整數(shù)m共有多少個(gè)?

查看答案和解析>>

同步練習(xí)冊答案