在平面直角坐標系xOy中,點F是雙曲線C:數(shù)學公式=1(a>0,b>0)的右焦點,過F作雙曲線C的一條漸近線的垂線,垂足為A,延長FA與另一條漸近線交于點B.若數(shù)學公式=2數(shù)學公式,則雙曲線的離心率為________.

2
分析:先由=2,得出A為線段FB的中點,再借助于圖象分析出其中一條漸近線對應的傾斜角的度數(shù),找到a,b之間的等量關系,進而求出雙曲線的離心率.
解答:解:如圖因為=2,所以A為線段FB的中點,∴∠2=∠4,又∠1=∠3,
∠2+∠3=90°,所以∠1=∠2+∠4=2∠2=∠3.
故∠2+∠3=90°=3∠2?∠2=30°?∠1=60°?
,e2=4?e=2.
故答案為:2.
點評:本題是對雙曲線的漸進線以及離心率的綜合考查,是考查基本知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,雙曲線中心在原點,焦點在y軸上,一條漸近線方程為x-2y=0,則它的離心率為( 。
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知直線l的參數(shù)方程為
x=2t-1 
y=4-2t .
(參數(shù)t∈R),以直角坐標原點為極點,x軸的正半軸為極軸建立相應的極坐標系.在此極坐標系中,若圓C的極坐標方程為ρ=4cosθ,則圓心C到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(坐標系與參數(shù)方程) 在平面直角坐標系xOy中,圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+2
 (參數(shù)θ∈[0,2π)),若以原點為極點,射線ox為極軸建立極坐標系,則圓C的圓心的極坐標為
 
,圓C的極坐標方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣東)在平面直角坐標系xOy中,直線3x+4y-5=0與圓x2+y2=4相交于A、B兩點,則弦AB的長等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.
(Ⅰ)若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步練習冊答案