直線l:y=k(x-2)+2將圓C:x2+y2-2x-2y=0平分,則直線l的方向向量是( )
A.(2,-2)
B.(2,2)
C.(-3,2)
D.(2,1)
【答案】分析:利用圓心C(1,1)在直線l上求出k,從而得到直線方程,進(jìn)而得到直線的法向量的和方向向量.
解答:解:∵圓C:x2+y2-2x-2y=0 的圓心C(1,1),直線l:y=k(x-2)+2將圓C:x2+y2-2x-2y=0平分,
故圓心C(1,1)在直線l上,
∴1=k(1-2)+2,∴k=1,
故直線l的方程為x-y-2=0,其法向量為(1,-1),
故直線l的方向向量與(1,1)平行,
故選B.
點(diǎn)評(píng):本題考查直線和圓相交的性質(zhì),直線的方向向量和法向量的定義,關(guān)鍵是判斷圓心C在直線l上.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直角三角形PAB的直角頂點(diǎn)為B,點(diǎn)P的坐標(biāo)為(3,0),點(diǎn)B在y軸上,點(diǎn)A在x軸的負(fù)半軸上,在BA的延長(zhǎng)線上取一點(diǎn)C,使
BC
=3
BA

(1)當(dāng)B在y軸上移動(dòng)時(shí),求動(dòng)點(diǎn)C的軌跡方程;
(2)若直線l:y=k(x-1)與點(diǎn)C的軌跡交于M、N兩點(diǎn),設(shè)D(-1,0),當(dāng)∠MDN為銳角時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l:y=k(x-2)+2與圓x2+y2-2x-2y=0有兩個(gè)不同的公共點(diǎn),則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•成都三模)已知O為坐標(biāo)原點(diǎn),點(diǎn)E、F的坐標(biāo)分別為(-
2
,0)、(
2
,0),點(diǎn)A、N滿足
AE
=2
3
ON
=
1
2
(
OA
+
OF
)
,過(guò)點(diǎn)N且垂直于AF的直線交線段AE于點(diǎn)M,設(shè)點(diǎn)M的軌跡為C.
(1)求軌跡C的方程;
(2)若軌跡C上存在兩點(diǎn)P和Q關(guān)于直線l:y=k(x+1)(k≠0)對(duì)稱,求k的取值范圍;
(3)在(2)的條件下,設(shè)直線l與軌跡C交于不同的兩點(diǎn)R、S,對(duì)點(diǎn)B(1,0)和向量a=(-
3
,3k),求
BR
BS
-|a|2
取最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x+1)2+(y-2)2=4
(1)若直線l:y=k(x-2)與圓C有且只有一個(gè)公共點(diǎn),求直線l的斜率k的值;
(2)若直線m:y=kx+2被圓C截得的弦AB滿足OA⊥OB(O是坐標(biāo)原點(diǎn)),求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=8x,O為坐標(biāo)原點(diǎn),動(dòng)直線l:y=k(x+2)與拋物線C交于不同兩點(diǎn)A,B
(1)求證:
OA
OB
為常數(shù);
(2)求滿足
OM
=
OA
+
OB
的點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案