【題目】如圖,在直四棱柱ABCDA1B1C1D1中,已知底面ABCD是菱形,點(diǎn)P是側(cè)棱C1C的中點(diǎn).

1)求證:AC1∥平面PBD;

2)求證:BDA1P

【答案】(1)見解析;(2)見解析

【解析】

1)連接ACBDO點(diǎn),連接OP,證出AC1OP,再由線面平行的判定定理即可證出.

2)首先由線面垂直的判定定理證出BD⊥面AC1,再由線面垂直的定義即可證出.

1

連接ACBDO點(diǎn),連接OP,

因?yàn)樗倪呅?/span>ABCD是正方形,對角線ACBD于點(diǎn)O

所以O點(diǎn)是AC的中點(diǎn),所以AO=OC

又因?yàn)辄c(diǎn)P是側(cè)棱C1C的中點(diǎn),所以CP=PC1,

ACC1中,,所以AC1OP,

又因?yàn)?/span>OPPBDAC1PBD,

所以AC1∥平面PBD

2)連接A1C1.因?yàn)?/span>ABCDA1B1C1D1為直四棱柱,

所以側(cè)棱C1C垂直于底面ABCD

BD平面ABCD,所以CC1BD

因?yàn)榈酌?/span>ABCD是菱形,所以ACBD,

ACCC1=C,ACAC1,CC1AC1,所以BD⊥面AC1,

又因?yàn)?/span>PCC1,CC1ACC1A1,所以P∈面ACC1A1,

因?yàn)?/span>A1∈面ACC1A1,所以A1PAC1,所以BDA1P

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓的右焦點(diǎn),過點(diǎn)的直線交橢圓于兩點(diǎn). 的中點(diǎn),直線與直線交于點(diǎn).

(Ⅰ)求征:;

(Ⅱ)求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在南北方向有一條公路,一半徑為100的圓形廣場(圓心為)與此公路所在直線相切于點(diǎn),點(diǎn)為北半圓。ɑ)上的一點(diǎn),過點(diǎn)作直線的垂線,垂足為,計(jì)劃在內(nèi)(圖中陰影部分)進(jìn)行綠化,設(shè)的面積為(單位:),

1)設(shè),將表示為的函數(shù);

2)確定點(diǎn)的位置,使綠化面積最大,并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),若以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcosθsinθ

1)求直線l被曲線C所截得的弦長;

2)若Mx,y)是曲線C上的動(dòng)點(diǎn),求x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天干地支紀(jì)年法,源于中國,中國自古便有十天干與十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀(jì)年法是按順序以一個(gè)天干和一個(gè)地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推,排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推,已知2016年為丙申年,那么到改革開放100年時(shí),即2078年為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓a0b0)的左右焦點(diǎn)分別為F1,F2,與y軸正半軸交于點(diǎn)B,若BF1F2為等腰直角三角形,且直線BF1被圓x2+y2b2所截得的弦長為2,

1)求橢圓的方程;

2)直線lykx+m與橢圓交于點(diǎn)A,C,線段AC的中點(diǎn)為M,射線MO與橢圓交于點(diǎn)P,點(diǎn)OPAC的重心,求證:PAC的面積S為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面五邊形中,已知四邊形為正方形,為正三角形.沿著將四邊形折起得到四棱錐,使得平面平面,設(shè)在線段上且滿足,在線段上且滿足,的重心,如圖(2.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車間隔時(shí)間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):

間隔時(shí)間/

10

11

12

13

14

15

等候人數(shù)y/

23

25

26

29

28

31

調(diào)查小組先從這組數(shù)據(jù)中選取組數(shù)據(jù)求線性回歸方程,再用剩下的組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若差值的絕對值都不超過,則稱所求方程是“恰當(dāng)回歸方程”.

(1)從這組數(shù)據(jù)中隨機(jī)選取組數(shù)據(jù)后,求剩下的組數(shù)據(jù)的間隔時(shí)間不相鄰的概率;

(2)若選取的是后面組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”;

(3)為了使等候的乘客不超過人,試用(2)中方程估計(jì)間隔時(shí)間最多可以設(shè)置為多少(精確到整數(shù))分鐘.

附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面,是正三角形,的交點(diǎn)恰好是中點(diǎn),又,.

(1)求證:;

(2)設(shè)的中點(diǎn),點(diǎn)在線段上,若直線平面,求的長;

(3)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案