已知橢圓+上一點(diǎn)P到兩焦點(diǎn)距離之積為m,則當(dāng)m取最大值時(shí),P點(diǎn)坐標(biāo)   
【答案】分析:根據(jù)橢圓的定義,P到兩焦點(diǎn)距離之和滿足|PF1|+|PF2|=2a=10,由基本不等式可得:當(dāng)且僅當(dāng)|PF1|=|PF2|=5時(shí),P到兩焦點(diǎn)距離之積為m有最大值為25.由此可得m取最大值時(shí)P點(diǎn)坐標(biāo).
解答:解:設(shè)橢圓的左右焦點(diǎn)為F1、F2
根據(jù)橢圓的定義,可得|PF1|+|PF2|=2a=10
∵|PF1|•|PF2|≤[(|PF1|+|PF2|)]2=25
當(dāng)且僅當(dāng)|PF1|=|PF2|=5時(shí),P到兩焦點(diǎn)距離之積為m有最大值為25
∴當(dāng)m取最大值時(shí),P點(diǎn)位于短軸的頂點(diǎn),其坐標(biāo)為(0,±4)
故答案為:(0,±4)
點(diǎn)評(píng):本題求橢圓上動(dòng)點(diǎn)P到兩個(gè)焦點(diǎn)距離之積的最大值.著重考查了橢圓的定義與標(biāo)準(zhǔn)方程、基本不等式求最值等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓=1上一點(diǎn)P到一個(gè)焦點(diǎn)的距離為3,那么點(diǎn)P到另一個(gè)焦點(diǎn)的距離為(    )

A.2            B.3              C.5            D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓+=1上一點(diǎn)P到它的右準(zhǔn)線的距離為10,則點(diǎn)P到它的左焦點(diǎn)的距離是(    )

A.8                B.10                C.12                 D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓=1上一點(diǎn)P到橢圓的一個(gè)焦點(diǎn)的距離是3,則P點(diǎn)到另一個(gè)焦點(diǎn)的距離是(    )

A.2                    B.3               C.5                D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓=1上一點(diǎn)P到橢圓的一個(gè)焦點(diǎn)的距離是3,則P點(diǎn)到另一個(gè)焦點(diǎn)的距離是(    )

A.2                    B.3               C.5                D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓+=1上一點(diǎn)P到其一個(gè)焦點(diǎn)的距離為3,則點(diǎn)P到另一個(gè)焦點(diǎn)的距離為(    )

A.2             B.3             C.5                D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案