等比數(shù)列{an}的首項(xiàng)a1=1,且a2,a5+1,a6成等差數(shù)列,則數(shù)列{an}的前5項(xiàng)之和是


  1. A.
    15
  2. B.
    31
  3. C.
    53
  4. D.
    83
B
分析:由a2,a5+1,a6成等差數(shù)列可得2(a5+1)=a2+a6,a1=1,代入等比數(shù)列的通項(xiàng)公式可得,2(1+q4)=q+q5
解方程可求q,代入等比數(shù)列的前n項(xiàng)和公式可求
解答:由題意可得2(a5+1)=a2+a6,a1=1
代入等比數(shù)列的通項(xiàng)公式可得,2(1+q4)=q+q5
解方程可得,q=2

故選B
點(diǎn)評(píng):本題綜合考查了等差數(shù)列及等比數(shù)列利用基本量表示數(shù)列中的項(xiàng)及數(shù)列的和,要求考生熟練掌握基本公式,具備一定的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的首項(xiàng)為a1=
1
3
,公比q滿足q>0且q≠1.又已知a1,5a3,9a5成等差數(shù)列.
(1)求數(shù)列{an]的通項(xiàng)
(2)令bn=log3
1
an
,求證:對(duì)于任意n∈N*,都有
1
2
1
b1b2
1
b2b3
+…+
1
bnbn+1
<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的首項(xiàng)a1>0,公比q>-1,q≠0,設(shè)數(shù)列{bn}的通項(xiàng)公式bn=an+1+an+2(n∈N*),數(shù)列{an},{bn}的前n項(xiàng)和分別記為An,Bn,試比較An與Bn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•上海模擬)已知等比數(shù)列{an}的首項(xiàng)a1=1,公比為x(x>0),其前n項(xiàng)和為Sn
(1)求函數(shù)f(x)=
lim
n→+∞
Sn
Sn+1
的解析式;
(2)解不等式f(x)>
10-3x
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•普陀區(qū)一模)無(wú)窮等比數(shù)列{an}的首項(xiàng)為3,公比q=-
1
3
,則{an}的各項(xiàng)和S=
9
4
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•韶關(guān)二模)已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=2,Sn為其前n項(xiàng)和,若5S1,S3,3S2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn=
1bnbn+1
,記數(shù)列{cn}的前n項(xiàng)和Tn.若對(duì)?n∈N*,Tn≤k(n+4)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案