已知x,y∈R+,且xy2=8,則4x+y的最小值為(  )
A、4
2
B、6
2
C、6
D、2
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:利用基本不等式的性質(zhì)即可得出.
解答: 解:∵x,y∈R+,且xy2=8,
∴4x+y=
32
y2
+
1
2
y
+
1
2
y
≥3
3
32
y2
1
2
y•
1
2
y
=3×2=6,當(dāng)且僅當(dāng)
32
y2
=
1
2
y
,即x=
1
2
,y=4時(shí)取等號(hào),
∴4x+y的最小值為6,
故選:C.
點(diǎn)評(píng):熟練掌握基本不等式的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,c=4,b=9,∠A=30°,則S△ABC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(πx+
π
3
),x∈R,以下結(jié)論:
①函數(shù)f(x)的最小正周期是2;
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(-
1
3
,0)對(duì)稱;
③函數(shù)f(x)的圖象關(guān)于直線x=-
5
6
對(duì)稱;
④函數(shù)f(x)在區(qū)間(0,
1
3
)上是增函數(shù);
⑤函數(shù)f(x)的圖象可由函數(shù)y=sinπx的圖象向左平移
π
3
得到.
其中正確的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(-1,1),
b
=(2,x),若
a
⊥(
a
+
b
),則實(shí)數(shù)x的值為( 。
A、0B、1C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

運(yùn)行如圖所示的程序,如果輸出結(jié)果為sum=1320,那么判斷框中應(yīng)填(  )
A、i≥9B、i≥10
C、i≤9D、i≤10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法不正確的是(  )
A、對(duì)于函數(shù)y=f(x),若f(a)=0,則a是函數(shù)y=f(x)的零點(diǎn)
B、方程f(x)=0有實(shí)數(shù)根,則函數(shù)y=f(x)有零點(diǎn)
C、如果函數(shù)y=f(x)在區(qū)間[a,b]上圖象是連續(xù)不斷的一條曲線,且f(a)•f(b)<0,那么函數(shù)y=f(x)在區(qū)間[a,b]內(nèi)至少有一個(gè)零點(diǎn)
D、如果函數(shù)y=f(x)在區(qū)間[a,b]上圖象是連續(xù)不斷的一條曲線,且f(a)•f(b)>0,那么函數(shù)y=f(x)在區(qū)間[a,b]內(nèi)一定有一個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)點(diǎn)A到定點(diǎn)F1(0,-2)和F2(0,2)的距離和為4,則點(diǎn)A的軌跡為( 。
A、橢圓B、線段
C、無(wú)軌跡D、兩條射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y∈R,且命題p:x>y,命題q:x-y+sin(x-y)>0,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)函數(shù)f(x)=x2-4x+5-2lnx的零點(diǎn)個(gè)數(shù)為(  )
A、3B、2C、1D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案