3.已知log3(2m2-2)=1+log3m,則函數(shù)f(x)=x2-mx-2在[1,2]的最小值為-3.

分析 先根據(jù)對數(shù)的運算性質(zhì)求出m的值,再根據(jù)二次函數(shù)的性質(zhì)求出在[1,2]的最小值

解答 解:∵log3(2m2-2)=1+log3m=log33m
∴2m2-2=3m,
解得m=2或m=-$\frac{1}{2}$(舍去),
函數(shù)f(x)=x2-2x-2=(x-1)2-3,
當(dāng)x=1時,函數(shù)有最小值為-3,
故答案為:-3

點評 本題考查了對數(shù)的運算性質(zhì)和二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)A,B是非空集合,定義A?B={x|x∈A∪B且x∉A∩B}.已知M={y|y=-x2+2x,0<x<2},N={y|y=2x-1,x>0},則M?N=(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x+$\frac{m}{x}$,且f(1)=2.
(Ⅰ)求m的值;
(Ⅱ)判斷f(x)的奇偶性;
(Ⅲ)用定義法證明f(x)在區(qū)間(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知某組合體的正視圖與側(cè)視圖相同,如圖所示,其中AB=AC,四邊形BCDE為矩形,則該組合體的俯視圖可能為(  )
A.(1)(3)B.(1)(2)(4)C.(2)(3)(4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓C:(x-1)2+y2=$\frac{11}{2}$內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.
(1)當(dāng)l經(jīng)過圓心C時,求直線l的方程;
(2)當(dāng)直線l的斜率k=1時,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lg(l+x)-lg(2-x)的定義域為條件p,關(guān)于x的不等式x2+mx-2m2-3m-l<0(m>$-\frac{2}{3}$)的解集為條件q.
(1)若p是q的充分不必要條件時,求實數(shù)m的取值范圍.
(2)若¬p是¬q的充分不必要條件時,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)φ(x)=$\frac{a}{x+1}$,a>0.
(1)若函數(shù)f(x)=lnx+φ(x)在(1,2)上只有一個極值點,求a的取值范圍;
(2)若g(x)=|lnx|+φ(x),且對任意x1,x2∈(0,2],且x1≠x2,都有$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a、b、c分別是△ABC三個內(nèi)角A、B、C所對的邊,則a2=c(b+c)是A=2C成立的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x|x2-x-6=0},B={x|mx+1=0},且A∪B=A,求實數(shù)m的值組成的集合.

查看答案和解析>>

同步練習(xí)冊答案