【題目】墻上有一壁畫,最高點(diǎn)處離地面米,最低點(diǎn)處離地面米,距離墻米處設(shè)有防護(hù)欄,觀察者從離地面高米的處觀賞它.

1)當(dāng)時(shí),觀察者離墻多遠(yuǎn)時(shí),視角最大?

2)若,視角的正切值恒為,觀察者離墻的距離應(yīng)在什么范圍內(nèi)?

【答案】1)當(dāng)觀察者離墻米處時(shí),視角最大;(2.

【解析】

1)過點(diǎn)的垂線,垂足為,設(shè)觀察者離墻米,則,求出,利用兩角差的正切公式可得出關(guān)于的表達(dá)式,利用基本不等式可求得的最大值,進(jìn)而得解;

2)求得,可得出,由可得出,結(jié)合可得出的取值范圍,進(jìn)而得解.

1)當(dāng)時(shí),過的垂線,垂足為,則,且,

設(shè)觀察者離墻米,則,且,

所以,,

當(dāng)且僅當(dāng),即當(dāng)時(shí),取最大值,此時(shí)視角最大;

2)由(1)得,,

,

,

當(dāng)時(shí),,則,解得.

,所以,.

因此,觀察者離墻的距離應(yīng)在米范圍內(nèi).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),離心率為,動(dòng)點(diǎn)M2,t)(.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求以OM為直徑且截直線所得的弦長為2的圓的方程;

3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)FOM的垂線與以OM為直徑的圓交于點(diǎn)N,證明線段ON的長為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為振興旅游業(yè),香港計(jì)劃向內(nèi)陸地區(qū)發(fā)行總量為2000萬張的紫荊卡,其中向內(nèi)陸人士(廣東戶籍除外)發(fā)行的是紫荊金卡(簡稱金卡),向廣東籍人士發(fā)行的是紫荊銀卡(簡稱銀卡).某旅游公司組織了一個(gè)有36名內(nèi)陸游客的旅游團(tuán)到香港名勝旅游,其中是非廣東籍內(nèi)陸游客,其余是廣東籍游客.在非廣東新游客中有持金卡,在廣東籍游客中有持銀卡.

(Ⅰ)在該團(tuán)中隨機(jī)采訪3名游客,求恰有1人持金卡且持銀卡者少于2人的概率;

(Ⅱ)在該團(tuán)的廣東籍游客中隨機(jī)采訪3名游客,設(shè)其中持銀卡人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸,離心率為,且長軸長是短軸長的倍.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)過橢圓左焦點(diǎn)的直線, 兩點(diǎn),若對滿足條件的任意直線,不等式 恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

某初級中學(xué)共有學(xué)生2000名,各年級男、女生人數(shù)如下表:


初一年級

初二年級

初三年級

女生

373

x

y

男生

377

370

z

已知在全校學(xué)生中隨機(jī)抽取1名,抽到初二年級女生的概率是0.19.

x的值;

現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問應(yīng)在初三年級抽取多少名?

已知y245,z245,求初三年級中女生比男生多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中, , 交于點(diǎn),現(xiàn)將沿折起得到三棱錐, , 分別是, 的中點(diǎn).

(1)求證: ;

(2)若三棱錐的最大體積為,當(dāng)三棱錐的體積為,且二面角為銳角時(shí),求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù),定義域?yàn)?/span>的函數(shù)是偶函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)求實(shí)數(shù)值;

(Ⅱ)判斷該函數(shù)上的單調(diào)性并用定義證明;

(Ⅲ)是否存在實(shí)數(shù),使得對任意的,不等式恒成立.若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了確定下一年度投入某種產(chǎn)品的宣傳費(fèi)用,需了解年宣傳費(fèi)x(單位:萬元)對年銷量y(單位:噸)和年利潤(單位:萬元)的影響.對近6宣傳費(fèi)xi和年銷售量yii=1,2,3,4,5,6)的數(shù)據(jù)做了初步統(tǒng)計(jì),得到如下數(shù)據(jù):

年份

2013

2014

2015

2016

2017

2018

年宣傳費(fèi)x(萬元)

38

48

58

68

78

88

年銷售量y(噸)

16.8

18.8

20.7

22.4

24.0

25.5

經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)x(萬元)與年銷售量y(噸)之間近似滿足關(guān)系式yaxbab>0),即lnyblnx+lna,對上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如下表:

75.3

24.6

18.3

101.4

(Ⅰ)從表中所給出的6年年銷售量數(shù)據(jù)中任選2年做年銷售量的調(diào)研,求所選數(shù)據(jù)中至多有一年年銷售量低于20噸的概率.

(Ⅱ)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

(Ⅲ) 若生產(chǎn)該產(chǎn)品的固定成本為200(萬元),且每生產(chǎn)1(噸)產(chǎn)品的生產(chǎn)成本為20(萬元)(總成本=固定成本+生產(chǎn)成本+年宣傳費(fèi)),銷售收入為(萬元),假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),則2019年該公司應(yīng)該投入多少宣傳費(fèi)才能使利潤最大?(其中

附:對于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn)

(Ⅰ)求橢圓方程;

(Ⅱ)設(shè)不過原點(diǎn)的直線,與該橢圓交于兩點(diǎn),直線的斜率分別為,滿足

(i)當(dāng)變化時(shí),是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是,請說明理由;

(ii)求面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案