已知拋物線上一定點和兩動點,當時,點的橫坐標的取值范圍是(     )
A.B.C.[,1]D.
D

試題分析:解:設P(a,b)、Q(x,y),則 =(a+1,b), =(x-a,y-b)
由PA⊥PQ得(a+1)(x-a)+b(y-b)=0
又P、Q在拋物線上即a2=b+1,x2=y+1,故(a+1)(x-a)+(a2-1)(x2-a2)=0
整理得(a+1)(x-a)[1+(a-1)(x+a)]=0
而P和Q和A三點不重合即a≠-1、x≠a
所以式子可化為1+(a-1)(x+a)=0
整理得 a2+(x-1)a+1-x=0
由題意可知,此關于a的方程有實數(shù)解,即判別式△≥0
得(x-1)2-4(1-x)≥0,解得x≤-3或x≥1
故選D.
點評:本題主要考查拋物線的應用和不等式的綜合運用.考查了學生綜合運用所學知識和運算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

到兩互相垂直的異面直線的距離相等的點,在過其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是(   )。
A.直線B.橢圓C.拋物線D.雙曲線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓,過橢圓右焦點F的直線L交橢圓于A、B兩點,交y軸于P點。設,則等于(   )
A.         B.         C.          D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的焦點為F,傾斜角為的直線過點F且與拋物線的一個交點為A,,則拋物線的方程為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y=4x2的準線方程是                                     (    )
A.x=1B.C.y=-1D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

兩圓的位置關系是
A.內(nèi)切B.相交C.外切D.外離

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,橢圓、與雙曲線、的離心率分別是、、, 則、、、的大小關系是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的中心在坐標原點、對稱軸為坐標軸,且拋物線的焦點是它的一個焦點,又點在該橢圓上.
(1)求橢圓的方程;
(2)若斜率為直線與橢圓交于不同的兩點,當面積的最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設雙曲線的方程為,為其左、右兩個頂點,是雙曲線 上的任意一點,作,,垂足分別為、,交于點.
(1)求點的軌跡方程;
(2)設、的離心率分別為、,當時,求的取值范圍.

查看答案和解析>>

同步練習冊答案