如圖,已知雙曲線以長方形ABCD的頂點A,B為左、右焦點,且過C,D兩頂點.若AB=4,BC=3,則此雙曲線的標準方程為   
【答案】分析:由題意可得點A,B,C的坐標,設出雙曲線的標準方程,根據(jù)題意知2a=AC-BC,求得a,進而根據(jù)b,a和c的關系求得b,則雙曲線的方程可得.
解答:解:由題意可得點OA=OB=2,AC=5
設雙曲線的標準方程是
則2a=AC-BC=5-3=2,
所以a=1.
所以b2=c2-a2=4-1=3.
所以雙曲線的標準方程是
故答案為:
點評:本題主要考查了雙曲線的標準方程以及直線與橢圓的關系.解答的關鍵是合理利用雙曲線的定義解題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,拋物線C1:y2=8x與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)有公共焦點F2,點A是曲線C1,C2在第一象限的交點,且|AF2|=5.
(1)求雙曲線C2的方程;
(2)以F1為圓心的圓M與雙曲線的一條漸近線相切,圓N:(x-2)2+y2=1,已知點P(1,
3
),過點P作互相垂直且分別與圓M圓N相交的直線l1,l2,設l1被圓M截得的弦長為s,l2被圓N截得的弦長為t,
s
t
是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

請考生在(1)(2)中任選一題作答,每小題12分.如都做,按所做的第(1)題計分.
(1)如圖,在△ABC中,AB=AC,∠C=72°,⊙O過A、B兩點且與BC相切于點B,與AC交于點D,連接B、D,若BC=
5
-1
,求AC的長.
(2)已知雙曲線C:x2-y2=2,以雙曲線的左焦點F為極點,射線FO(O為坐標原點)為極軸,點M為雙曲線上任意一點,其極坐標是(ρ,θ),試根據(jù)雙曲線的定義求出ρ與θ的關系式(將ρ用θ表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

請考生在(1)(2)中任選一題作答,每小題12分.如都做,按所做的第(1)題計分.
(1)如圖,在△ABC中,AB=AC,∠C=72°,⊙O過A、B兩點且與BC相切于點B,與AC交于點D,連接B、D,若BC=數(shù)學公式,求AC的長.
(2)已知雙曲線C:x2-y2=2,以雙曲線的左焦點F為極點,射線FO(O為坐標原點)為極軸,點M為雙曲線上任意一點,其極坐標是(ρ,θ),試根據(jù)雙曲線的定義求出ρ與θ的關系式(將ρ用θ表示).

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省荊州中學高三第二次質量檢查數(shù)學試卷(理科)(解析版) 題型:解答題

請考生在(1)(2)中任選一題作答,每小題12分.如都做,按所做的第(1)題計分.
(1)如圖,在△ABC中,AB=AC,∠C=72°,⊙O過A、B兩點且與BC相切于點B,與AC交于點D,連接B、D,若BC=,求AC的長.
(2)已知雙曲線C:x2-y2=2,以雙曲線的左焦點F為極點,射線FO(O為坐標原點)為極軸,點M為雙曲線上任意一點,其極坐標是(ρ,θ),試根據(jù)雙曲線的定義求出ρ與θ的關系式(將ρ用θ表示).

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省廣州市高考數(shù)學考前查漏補缺試卷(文科)(解析版) 題型:解答題

如圖,拋物線C1:y2=8x與雙曲線有公共焦點F2,點A是曲線C1,C2在第一象限的交點,且|AF2|=5.
(1)求雙曲線C2的方程;
(2)以F1為圓心的圓M與雙曲線的一條漸近線相切,圓N:(x-2)2+y2=1.已知點,過點P作互相垂直且分別與圓M、圓N相交的直線l1和l2,設l1被圓M截得的弦長為s,l2被圓N截得的弦長為t.是否為定值?請說明理由.

查看答案和解析>>

同步練習冊答案