已知斜三棱柱ABC-A1B1C1的側(cè)面BB1C1C與底面ABC垂直,BB1=BC,∠B1BC=60°,AB=AC,M是B1C1的中點(diǎn).
(Ⅰ)求證:AB1∥平面A1CM;
(Ⅱ)若AB1與平面BB1C1C所成的角為45°,求二面角B-AC-B1的大。

【答案】分析:(I)先連接AC1,交A1C于N,連接MN,根據(jù)中位線(xiàn)定理得到MN∥AB1,再由線(xiàn)面平行的判定定理可證AB1∥平面A1CM,得證.
(II)先作BC的中點(diǎn)O,連接AO、B1O,根據(jù)面面垂直的性質(zhì)定理可知AO⊥面BB1C1C,進(jìn)而知∠AB1O是AB1與平面BB1C1C所成的角,再由BB1=BC,∠B1BC=60°可得△B1BC是正三角形且B1O⊥BC,然后以O(shè)為原點(diǎn),分別以O(shè)B、OB1、OA為x軸、y軸、z軸建立直角坐標(biāo)系,假設(shè)OA=a,則可得A、B1C、O的坐標(biāo),進(jìn)而可表示出、的坐標(biāo),因?yàn)镺B1⊥平面ABC,得到是平面ABC的一個(gè)法向量,然后表示出平面AB1C的法向量,可得到<n1,n2>=,即二面角B-AC-B1的大小是
解答:解:(I)證明:如圖,連接AC1,交A1C于N,連接MN.
∵M(jìn)是中點(diǎn),N是AC1的中點(diǎn),
∴MN∥AB1
∵M(jìn)N?平面A1CM,
∴AB1∥平面A1CM.
(II)作BC的中點(diǎn)O,連接AO、B1O.
∵AB=AC,
∴AO⊥BC.
∵側(cè)面BB1C1C與底面ABC垂直,
∴AO⊥面BB1C1C,
∴∠AB1O是AB1與平面BB1C1C所成的角,即∠AB1O=45°,從而AO=B1O.
又∵BB1=BC,∠B1BC=60°,
∴△B1BC是正三角形,所以B1O⊥BC.
以O(shè)為原點(diǎn),分別以O(shè)B、OB1、OA為x軸、y軸、z軸建立如圖所示空間直角坐標(biāo)系.
設(shè)OA=a,則A(0,0,a),B1(0,a,0),C(,0,0),O(0,0,0),
,
∵OB1⊥平面ABC,故是平面ABC的一個(gè)法向量,設(shè)為n1,
則n1=,
設(shè)平面AB1C的法向量為n2=(x2,y2,z2),
n2=0且n2=0得
令y2=a,得n2=(a,a,a).
∴cos<n1,n2>=,
∴<n1,n2>=
即二面角B-AC-B1的大小是
點(diǎn)評(píng):本題主要考查線(xiàn)面平行的判定定理和用向量的思想解決立體幾何中的平面夾角問(wèn)題.考查考生的知識(shí)的綜合運(yùn)用能力和計(jì)算能力,用向量的思想解決二面角問(wèn)題,是這幾年高考的熱點(diǎn)問(wèn)題,要強(qiáng)化復(fù)習(xí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1的側(cè)面BB1C1C是邊長(zhǎng)為2的菱形,∠B1BC=60°,側(cè)面BB1C1C⊥底面ABC,∠ABC=90°,二面角A-B1B-C為30°.
(1)求證:AC⊥平面BB1C1C;
(2)求AB1與平面BB1C1C所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1的側(cè)面BB1C1C與底面ABC垂直,BB1=BC,∠B1BC=60°,AB=AC,M是B1C1的中點(diǎn).
(Ⅰ)求證:AB1∥平面A1CM;
(Ⅱ)若AB1與平面BB1C1C所成的角為45°,求二面角B-AC-B1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知斜三棱柱ABC-A1B1C1的底面邊長(zhǎng)AB=2,BC=3,BC⊥面ABC1,CC1與面ABC所成的角為60°則斜三棱柱ABC-A1B1C1體積的最小值是
9
3
9
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知斜三棱柱ABC-A1B1C1的各棱長(zhǎng)均為2,側(cè)棱與底面所成角為
π3
,且側(cè)面ABB1A1垂直于底面.
(1)判斷B1C與C1A是否垂直,并證明你的結(jié)論;
(2)求四棱錐B-ACC1A1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,點(diǎn)D為AC的中點(diǎn),A1D⊥平面ABC,A1B⊥ACl
(I)求證:AC1⊥AlC; 
(Ⅱ)求二面角A-A1B-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案