雙曲線,)的左、右焦點(diǎn)分別是,過作傾斜角為的直線交雙曲線右支于點(diǎn),若垂直于軸,則雙曲線的離心率為

A.             B.              C.             D.

 

【答案】

C

【解析】

試題分析:因?yàn)檫^作傾斜角為的直線交雙曲線右支于點(diǎn),若垂直于軸,所以在Rt?中,,所以由雙曲線的定義知。

考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì);雙曲線離心率的求法。

點(diǎn)評(píng):求圓錐曲線的離心率是常見題型,常用方法:①直接利用公式;②利用變形公式:(橢圓)和(雙曲線)③根據(jù)條件列出關(guān)于a、b、c的關(guān)系式,兩邊同除以a,利用方程的思想,解出。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F1、F2分別是雙曲線
x2
a2
-
y2
b2
=1
的左、右焦點(diǎn),過F1且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),若△ABF2為銳角三角形,則該雙曲線的離心率e的取值范圍是( 。
A、(1,+∞)
B、(1,
3
)
C、(1,2)
D、(1,1+
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知雙曲線x2-y2=1的左、右頂點(diǎn)分別為A1、A2,動(dòng)直線l:y=kx+m與圓x2+y2=1相切,且與雙曲線左、右兩支的交點(diǎn)分別為P1(x1,y1),P2(x2,y2).
(Ⅰ)求k的取值范圍,并求x2-x1的最小值;
(Ⅱ)記直線m≤
x
lnx
的斜率為φ=
x
lnx
,直線m≤φ(x)min的斜率為φ′(x)=
lnx-1
ln2x
,那么,x∈(1,e)是定值嗎?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
4
-
y2
5
=1
的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為雙曲線上位于第一象限內(nèi)的一點(diǎn),且△PF1F2的面積為6,則點(diǎn)P的坐標(biāo)為
(
6
5
5
,2)
(
6
5
5
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是雙曲線
x2
16
-
y2
20
=1
的左、右焦點(diǎn),若P為雙曲線上一點(diǎn),且|PF1|=9,則|PF2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P為直線x+2y-1=0上的一個(gè)動(dòng)點(diǎn),F(xiàn)1、F2為雙曲線
x2
4
-
y2
5
=1
的左、右焦點(diǎn),則
PF1
PF2
的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案