已知橢圓方程是橢圓的左焦點(diǎn),直線l為對(duì)應(yīng)的準(zhǔn)線,直線l與x軸交于P點(diǎn),MN為橢圓的長(zhǎng)軸,過(guò)P點(diǎn)任作一條割線AB(如圖),則∠AFM與∠BFN的大小關(guān)系為( )

A.∠AFM>∠BFN
B.∠AFM<∠BFN
C.∠AFM=∠BFN
D.無(wú)法判斷
【答案】分析:當(dāng)AB斜率為0時(shí),顯然∠AFM=∠BFN成立;當(dāng)AB斜率不為0時(shí),設(shè)出直線方程,代入橢圓方程,利用韋達(dá)定理,進(jìn)而可得直線AF,BF的斜率的和為0,從而可得結(jié)論.
解答:解:當(dāng)AB的斜率為0時(shí),顯然∠AFM=∠BFN=0.
當(dāng)AB的斜率不為0時(shí),設(shè)A(x1,y1),B(x2,y2),AB方程為x=my-8,
代入橢圓方程,整理得(3m2+4)y2-48my+144=0
則△=(48m)2-4×144(3m2+4),
∴y1+y2=,y1y2=
∴kAF+kBF=+===0
∴kAF+kBF=0,從而∠AFM=∠BFN.
綜上可知:恒有∠AFM=∠BFN.
故選C.
點(diǎn)評(píng):本題考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查斜率的計(jì)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)
(1)當(dāng)橢圓的離心率e=
1
2
,一條準(zhǔn)線方程為x=4 時(shí),求橢圓方程;
(2)設(shè)P(x,y)是橢圓上一點(diǎn),在(1)的條件下,求z=x+2y的最大值及相應(yīng)的P點(diǎn)坐標(biāo).
(3)過(guò)B(0,-b)作橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的弦,若弦長(zhǎng)的最大值不是2b,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•汕頭一模)如圖.已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長(zhǎng)軸為AB,過(guò)點(diǎn)B的直線l與x軸垂直,橢圓的離心率e=
3
2
,F(xiàn)1為橢圓的左焦點(diǎn)且
AF1
F1B
=1.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)設(shè)P是橢圓上異于A、B的任意一點(diǎn),PH⊥x軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q使得HP=PQ.連接AQ并延長(zhǎng)交直線l于點(diǎn)M,N為MB的中點(diǎn),判定直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆福建省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)

如圖,已知橢圓,是橢圓的頂點(diǎn),若橢圓的離心率,且過(guò)點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)作直線,使得,且與橢圓相交于兩點(diǎn)(異于橢圓的頂點(diǎn)),設(shè)直線和直線的傾斜角分別是,求證:.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知橢圓方程數(shù)學(xué)公式是橢圓的左焦點(diǎn),直線l為對(duì)應(yīng)的準(zhǔn)線,直線l與x軸交于P點(diǎn),MN為橢圓的長(zhǎng)軸,過(guò)P點(diǎn)任作一條割線AB(如圖),則∠AFM與∠BFN的大小關(guān)系為


  1. A.
    ∠AFM>∠BFN
  2. B.
    ∠AFM<∠BFN
  3. C.
    ∠AFM=∠BFN
  4. D.
    無(wú)法判斷

查看答案和解析>>

同步練習(xí)冊(cè)答案