已知f(x)=x3+ax2+bx+c在x=1與x=-
2
3
時,都取得極值.
(1)求a,b的值;
(2)若f(-1)=
3
2
,求f(x)的單調(diào)區(qū)間和極值.
(1)f′(x)=3x2+2ax+b,∵f(x)在x=1與x=-
2
3
時,都取得極值,
∴f′(1)=0,f′(-
2
3
)=0,即3×1+2a+b=0,3×(-
2
3
)
2
+2a(-
2
3
)+b=0
解得a=-
1
2
,b=-2

(2)由(1)知,f(x)=x3-
1
2
x2-2x+c
f(-1)=
3
2
,∴-1-
1
2
+2+c=
3
2
,解得c=1
∴f(x)=x3-
1
2
x2-2x+1
又∵f′(x)=3x2-x-2,令f′(x)>0,即3x2-x-2>0,解得,x<-
2
3
,或x>1,
令f′(x)<0,即3x2-x-2<0.解得,-
2
3
<x<1
∴函數(shù)的增區(qū)間為 (-∞,-
2
3
),(1,+∞)
;減區(qū)間為(-
2
3
,1)
,
∴函數(shù)在x=-
2
3
時又極大值為 
49
27
,在x=1時有極小值為-
1
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函數(shù)f(x)的單調(diào)遞減區(qū)間為(
13
,1),求函數(shù)f(x)的解析式;
(2)若f(x)的導(dǎo)函數(shù)為f′(x),對任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲線y=f(x)在x=-1處的切線與直線2x-y-1=0平行,求a的值;
(2)當(dāng)a=-2時,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+x-2在點P處的切線與直線y=4x-1平行,則切點P的坐標(biāo)是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,則f(2013)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+3x2+a(a為常數(shù)) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步練習(xí)冊答案