【題目】在三棱錐A﹣BCD中,△ABD與△CBD均為邊長(zhǎng)為2的等邊三角形,且二面角的平面角為120°,則該三棱錐的外接球的表面積為( 。
A.7πB.8πC.D.
【答案】D
【解析】
如圖,取BD中點(diǎn)H,連接AH,CH,則∠AHC為二面角A﹣BD﹣C的平面角,即∠AHD=120°,分別過(guò)E,F作平面ABD,平面BCD的垂線,則三棱錐的外接球一定是兩條垂線的交點(diǎn),記為O,連接AO,HO,則由對(duì)稱性可得∠OHE=60°,進(jìn)而可求得R的值.
解:如圖,取BD中點(diǎn)H,連接AH,CH
因?yàn)?/span>△ABD與△CBD均為邊長(zhǎng)為2的等邊三角形
所以AH⊥BD,CH⊥BD,則∠AHC為二面角A﹣BD﹣C的平面角,即∠AHD=120°
設(shè)△ABD與△CBD外接圓圓心分別為E,F
則由AH=2可得AEAH,EHAH
分別過(guò)E,F作平面ABD,平面BCD的垂線,則三棱錐的外接球一定是兩條垂線的交點(diǎn)
記為O,連接AO,HO,則由對(duì)稱性可得∠OHE=60°
所以OE=1,則R=OA
則三棱錐外接球的表面積
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了引導(dǎo)居民合理用電,國(guó)家決定實(shí)行合理的階梯電價(jià),居民用電原則上以住宅為單位(一套住宅為一戶).
階梯級(jí)別 | 第一階梯 | 第二階梯 | 第三階梯 |
月用電范圍(度) | (0,210] | (210,400] |
某市隨機(jī)抽取10戶同一個(gè)月的用電情況,得到統(tǒng)計(jì)表如下:
居民用電戶編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
用電量(度) | 53 | 86 | 90 | 124 | 132 | 200 | 215 | 225 | 300 | 410 |
若規(guī)定第一階梯電價(jià)每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯的部分每度0.8元,試計(jì)算A居民用電戶用電410度時(shí)應(yīng)電費(fèi)多少元?
現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數(shù)的分布列與期望;
以表中抽到的10戶作為樣本估計(jì)全市的居民用電,現(xiàn)從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,P是側(cè)面上的動(dòng)點(diǎn),與垂直,則直線與直線AB所成角的正弦值的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市在創(chuàng)建“全國(guó)文明衛(wèi)生城市”的過(guò)程中,為了調(diào)查市民對(duì)創(chuàng)建“全國(guó)文明衛(wèi)生城市”工作的了解情況,進(jìn)行了一次知識(shí)問(wèn)卷調(diào)查(一位市民只能參加一次).通過(guò)隨機(jī)抽樣,得到參加問(wèn)卷調(diào)查的1000人的得分(滿分100分)統(tǒng)計(jì)結(jié)果如下表所示.
組別 | |||||||
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)該市把得分不低于80分的市民稱為“熱心市民”,若以頻率估計(jì)概率,以樣本估計(jì)總體,求從該市的市民中任意抽取一位,抽到“熱心市民”的概率;
(2)由頻數(shù)分布表可以大致認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示),請(qǐng)用正態(tài)分布的知識(shí)求;
(3)在(2)的條件下,該市為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:
(ⅰ)得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);
(ⅱ)每次獲贈(zèng)送的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:
贈(zèng)送的隨機(jī)話費(fèi)(單元:元) | 30 | 60 |
概率 | 0.75 | 0.25 |
現(xiàn)有市民甲要參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列與數(shù)學(xué)期望.
附:參考數(shù)據(jù)與公式
,若,則①;
②;③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】東莞的輕軌給市民出行帶來(lái)了很大的方便,越來(lái)越多的市民選擇乘坐輕軌出行,很多市民都會(huì)開(kāi)汽車到離家最近的輕軌站,將車停放在輕軌站停車場(chǎng),然后進(jìn)站乘輕軌出行,這給輕軌站停車場(chǎng)帶來(lái)很大的壓力.某輕軌站停車場(chǎng)為了解決這個(gè)問(wèn)題,決定對(duì)機(jī)動(dòng)車停車施行收費(fèi)制度,收費(fèi)標(biāo)準(zhǔn)如下:4小時(shí)內(nèi)(含4小時(shí))每輛每次收費(fèi)5元;超過(guò)4小時(shí)不超過(guò)6小時(shí),每增加一小時(shí)收費(fèi)增加3元;超過(guò)6小時(shí)不超過(guò)8小時(shí),每增加一小時(shí)收費(fèi)增加4元,超過(guò)8小時(shí)至24小時(shí)內(nèi)(含24小時(shí))收費(fèi)30元;超過(guò)24小時(shí),按前述標(biāo)準(zhǔn)重新計(jì)費(fèi).上述標(biāo)準(zhǔn)不足一小時(shí)的按一小時(shí)計(jì)費(fèi).為了調(diào)查該停車場(chǎng)一天的收費(fèi)情況,現(xiàn)統(tǒng)計(jì)1000輛車的停留時(shí)間(假設(shè)每輛車一天內(nèi)在該停車場(chǎng)僅停車一次),得到下面的頻數(shù)分布表:
(小時(shí)) | ||||||
頻數(shù)(車次) | 100 | 100 | 200 | 200 | 350 | 50 |
以車輛在停車場(chǎng)停留時(shí)間位于各區(qū)間的頻率代替車輛在停車場(chǎng)停留時(shí)間位于各區(qū)間的概率.
(1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進(jìn)行進(jìn)一步深入調(diào)研,記錄并統(tǒng)計(jì)了停車時(shí)長(zhǎng)與司機(jī)性別的列聯(lián)表:
男 | 女 | 合計(jì) | |
不超過(guò)6小時(shí) | 30 | ||
6小時(shí)以上 | 20 | ||
合計(jì) | 100 |
完成上述列聯(lián)表,并判斷能否有90%的把握認(rèn)為“停車是否超過(guò)6小時(shí)”與性別有關(guān)?
(2)(i)表示某輛車一天之內(nèi)(含一天)在該停車場(chǎng)停車一次所交費(fèi)用,求的概率分布列及期望;
(ii)現(xiàn)隨機(jī)抽取該停車場(chǎng)內(nèi)停放的3輛車,表示3輛車中停車費(fèi)用大于的車輛數(shù),求的概率.
參考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年,全國(guó)各地區(qū)堅(jiān)持穩(wěn)中求進(jìn)工作總基調(diào),經(jīng)濟(jì)運(yùn)行總體平穩(wěn),發(fā)展水平邁上新臺(tái)階,發(fā)展質(zhì)量穩(wěn)步上升,人民生活福祉持續(xù)增進(jìn),全年最終消費(fèi)支出對(duì)國(guó)內(nèi)生產(chǎn)總值增長(zhǎng)的貢獻(xiàn)率為57.8%.下圖為2019年居民消費(fèi)價(jià)格月度漲跌幅度:(同比(本期數(shù)-去年同期數(shù))/去年同期數(shù),環(huán)比(本期數(shù)-上期數(shù))/上期數(shù)
下列結(jié)論中不正確的是( )
A.2019年第三季度的居民消費(fèi)價(jià)格一直都在增長(zhǎng)
B.2018年7月份的居民消費(fèi)價(jià)格比同年8月份要低一些
C.2019年全年居民消費(fèi)價(jià)格比2018年漲了2.5%以上
D.2019年3月份的居民消費(fèi)價(jià)格全年最低
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中, 平面, , , , , , 是的中點(diǎn), 在線段上,且滿足.
(1)求證: 平面;
(2)求二面角的余弦值;
(3)在線段上是否存在點(diǎn),使得與平面所成角的余弦值是,若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若射線()與直線和曲線分別交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)證明:當(dāng)時(shí),恒成立;
(2)若函數(shù)在上只有一個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com