(2012•北海一模)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負(fù)半軸于點Q,且2
F1F2
+
F2Q
=
0
,則橢圓C的離心率為( 。
分析:設(shè)出Q的裝備,結(jié)合向量條件及向量運算得出關(guān)于a,c的等式,從而求得橢圓的離心率.
解答:解:設(shè)Q(x0,0),由F2(c,0),A(0,b),則
F2A
=(-c,b),
AQ
=(x0,-b)
F2A
AQ
,∴-cx0-b2=0,∴x0=-
b2
c
,
2
F1F2
+
F2Q
=
0
,∴F1為F2Q中點.
-
b2
c
+c=-2c

∴b2=3c2=a2-c2
∴橢圓的離心率e=
1
2

故選A.
點評:本題考查橢圓的離心率,考查向量知識的運用,確定關(guān)于a,c的等式是解題軛關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北海一模)定義一種運算(a,b)*(c,d)=ad-bc,若函數(shù)f(x)=(1,log3x)*(tan
13π
4
,(
1
5
)x)
,x0是方程f(x)=0的解,且0<x1<x0,則f(x1)的值( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北海一模)已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.
(I)求數(shù)列{an}的通項;
(II)記bn=2an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北海一模)如圖,在120°二面角α-l-β內(nèi)半徑為1的圓O1與半徑為2的圓O2分別在半平面α、β內(nèi),且與棱l切于同一點P,則以圓O1與圓O2為截面的球的表面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北海一模)i為虛數(shù)單位,復(fù)平面內(nèi)表示復(fù)數(shù)z=
1+i
i
的點在( 。

查看答案和解析>>

同步練習(xí)冊答案