精英家教網 > 高中數學 > 題目詳情

已知函數.

    (1)若,求的取值范圍;(6分)

    (2)若是以2為周期的偶函數,且當時,有,求函數

的反函數.(8分)

 

【答案】

(1);(2),.

【解析】解:(1)由,得.

         由.       ……3分

         因為,所以.

         由.                               ……6分

    (2)當xÎ[1,2]時,2-xÎ[0,1],因此

.        ……10分

由單調性可得.

因為,所以所求反函數是. ……14分

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
1-x2
+
x2-1
的定義域是( 。
A、[-1,1]
B、{-1,1}
C、(-1,1)
D、(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
(1-b)x+b,x<0
(b-3)x2+2,x≥0
,在(-∞,+∞)上是減函數,則實數b的范圍為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=1-
a
x
,g(x)=
lnx
x
,且函數f(x)在點(1,f(1))處的切線與直線x+y+3=0垂直.
(I)求a的值;
(II)如果當x∈(0,1)時,t•g(x)≤f(x)恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=
1
x+1
的定義域為集合A,集合B=(-2,+∞),則集合(CRA)∩B=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

請考生注意:重點高中學生做(2)(3).一般高中學生只做(1)(2).
已知函數f(x)=(1-a)x-lnx-
a
x
-1(a∈R)

(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)當a>0時,討論f(x)的單調性;
(3)當a=
3
4
時,設g(x)=x2-bx+1,若對任意x1∈(0,2],都存在x2∈(0,2],都存在x2∈[1,2]使f(x1)≤g(x2),求實數b的取值范圍.

查看答案和解析>>

同步練習冊答案